Properties

Label ab/2.4004
Order \( 2^{3} \cdot 7 \cdot 11 \cdot 13 \)
Exponent \( 2^{2} \cdot 7 \cdot 11 \cdot 13 \)
Abelian yes
$\card{\operatorname{Aut}(G)}$ \( 2^{7} \cdot 3^{2} \cdot 5 \)
Trans deg. $8008$
Rank $2$

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2} \times C_{4004}$
Order: \(8008\)\(\medspace = 2^{3} \cdot 7 \cdot 11 \cdot 13 \)
Exponent: \(4004\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \cdot 13 \)
Automorphism group:Group of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
Outer automorphisms:Group of order \(5760\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5 \)
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 4 7 11 13 14 22 26 28 44 52 77 91 143 154 182 286 308 364 572 1001 2002 4004
Elements 1 3 4 6 10 12 18 30 36 24 40 48 60 72 120 180 216 360 240 288 480 720 2160 2880 8008
Conjugacy classes   1 3 4 6 10 12 18 30 36 24 40 48 60 72 120 180 216 360 240 288 480 720 2160 2880 8008
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   8008 8008

Constructions

Rank: $2$
Inequivalent generating pairs: not computed

Homology

Primary decomposition: $C_{2} \times C_{4} \times C_{7} \times C_{11} \times C_{13}$

Subgroups

Center: $Z \simeq$ $C_{2} \times C_{4004}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2} \times C_{4004}$
Frattini: $\Phi \simeq$ $C_2$ $G/\Phi \simeq$ $C_{4004}$
Fitting: $\operatorname{Fit} \simeq$ $C_{2} \times C_{4004}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2} \times C_{4004}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_{4004}$ $G/S \simeq$ $C_2$
2-Sylow subgroup: $P_{2} \simeq$ $C_2\times C_4$
7-Sylow subgroup: $P_{7} \simeq$ $C_7$
11-Sylow subgroup: $P_{11} \simeq$ $C_{11}$
13-Sylow subgroup: $P_{13} \simeq$ $C_{13}$