Properties

Label 4004.9
Order \( 2^{2} \cdot 7 \cdot 11 \cdot 13 \)
Exponent \( 2 \cdot 7 \cdot 11 \cdot 13 \)
Abelian yes
$\card{\operatorname{Aut}(G)}$ \( 2^{5} \cdot 3^{3} \cdot 5 \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_{2} \times C_{2002}$
Order: \(4004\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \cdot 13 \)
Exponent: \(2002\)\(\medspace = 2 \cdot 7 \cdot 11 \cdot 13 \)
Automorphism group:Group of order \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)
Outer automorphisms:Group of order \(4320\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5 \)
Nilpotency class:$1$
Derived length:$1$

This group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary). Whether it is metacyclic or rational has not been computed.

Group statistics

Order 1 2 7 11 13 14 22 26 77 91 143 154 182 286 1001 2002
Elements 1 3 6 10 12 18 30 36 60 72 120 180 216 360 720 2160 4004
Conjugacy classes   1 3 6 10 12 18 30 36 60 72 120 180 216 360 720 2160 4004
Divisions data not computed
Autjugacy classes data not computed

Dimension 1
Irr. complex chars.   4004 4004

Constructions

Rank: not computed
Inequivalent generating tuples: not computed

Homology

Primary decomposition: $C_{2}^{2} \times C_{7} \times C_{11} \times C_{13}$

Subgroups

Center: $Z \simeq$ $C_{2} \times C_{2002}$ $G/Z \simeq$ $C_1$
Commutator: $G' \simeq$ $C_1$ $G/G' \simeq$ $C_{2} \times C_{2002}$
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_{2} \times C_{2002}$
Fitting: $\operatorname{Fit} \simeq$ $C_{2} \times C_{2002}$ $G/\operatorname{Fit} \simeq$ $C_1$
Radical: $R \simeq$ $C_{2} \times C_{2002}$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_{2} \times C_{2002}$ $G/S \simeq$ $C_1$
2-Sylow subgroup: $P_{2} \simeq$ $C_2^2$
7-Sylow subgroup: $P_{7} \simeq$ $C_7$
11-Sylow subgroup: $P_{11} \simeq$ $C_{11}$
13-Sylow subgroup: $P_{13} \simeq$ $C_{13}$