Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
630.a.34020.1 |
630.a |
\( 2 \cdot 3^{2} \cdot 5 \cdot 7 \) |
\( 2^{2} \cdot 3^{5} \cdot 5 \cdot 7 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(19.470889\) |
\(0.304233\) |
$[24100,969793,7474503265,4354560]$ |
$[6025,1472118,470090880,166291536519,34020]$ |
$[\frac{1587871127345703125}{6804},\frac{10732293030978125}{1134},\frac{13543327580000}{27}]$ |
$y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15$ |
3978.a.930852.1 |
3978.a |
\( 2 \cdot 3^{2} \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3^{4} \cdot 13^{2} \cdot 17 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$4$ |
2.360.2 |
✓ |
✓ |
$1$ |
\( 2^{4} \) |
\(1.000000\) |
\(12.005528\) |
\(0.750346\) |
$[5444,262801,507052857,119149056]$ |
$[1361,66230,2932992,-98652697,930852]$ |
$[\frac{4669717691462801}{930852},\frac{83483209094315}{465426},\frac{150912296512}{25857}]$ |
$y^2 + (x^2 + x)y = x^5 + 3x^4 - 3x^3 - 8x^2 + 6x$ |
4950.a.742500.1 |
4950.a |
\( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) |
\( 2^{2} \cdot 3^{3} \cdot 5^{4} \cdot 11 \) |
$0$ |
$3$ |
$\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ |
\(\Q \times \Q\) |
\(\Q \times \Q\) |
✓ |
$\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
|
|
|
$C_2^2$ |
$C_2^2$ |
$4$ |
$4$ |
2.360.2, 3.90.1 |
✓ |
✓ |
$1$ |
\( 2^{4} \) |
\(1.000000\) |
\(13.551501\) |
\(0.846969\) |
$[60740,861841,17199817017,95040000]$ |
$[15185,9571766,8017726464,7532617999271,742500]$ |
$[\frac{1291796084758794785}{1188},\frac{134059147400774599}{2970},\frac{62247853298432}{25}]$ |
$y^2 + (x^2 + x)y = 15x^5 - 22x^3 - 5x^2 + 8x + 3$ |