Learn more

Refine search


Results (3 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
630.a.34020.1 630.a \( 2 \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[24100,969793,7474503265,4354560]$ $[6025,1472118,470090880,166291536519,34020]$ $[\frac{1587871127345703125}{6804},\frac{10732293030978125}{1134},\frac{13543327580000}{27}]$ $y^2 + (x^2 + x)y = 3x^5 + 10x^4 - 23x^2 - 6x + 15$
3978.a.930852.1 3978.a \( 2 \cdot 3^{2} \cdot 13 \cdot 17 \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ \(\Q\) $[5444,262801,507052857,119149056]$ $[1361,66230,2932992,-98652697,930852]$ $[\frac{4669717691462801}{930852},\frac{83483209094315}{465426},\frac{150912296512}{25857}]$ $y^2 + (x^2 + x)y = x^5 + 3x^4 - 3x^3 - 8x^2 + 6x$
4950.a.742500.1 4950.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 11 \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/4\Z$ \(\Q \times \Q\) $[60740,861841,17199817017,95040000]$ $[15185,9571766,8017726464,7532617999271,742500]$ $[\frac{1291796084758794785}{1188},\frac{134059147400774599}{2970},\frac{62247853298432}{25}]$ $y^2 + (x^2 + x)y = 15x^5 - 22x^3 - 5x^2 + 8x + 3$
  displayed columns for results