Learn more

Refine search


Results (17 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
6075.a.18225.1 6075.a \( 3^{5} \cdot 5^{2} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[164,2745,106365,-9600]$ $[123,-399,-409,-52377,-18225]$ $[-\frac{115856201}{75},\frac{9166493}{225},\frac{687529}{2025}]$ $y^2 + (x^3 + 1)y = x^3 + 1$
15552.c.746496.1 15552.c \( 2^{6} \cdot 3^{5} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[142,1368,47940,-12]$ $[852,-2586,-2596,-2224797,-746496]$ $[-\frac{1804229351}{3},\frac{154259641}{72},\frac{3271609}{1296}]$ $y^2 + x^3y = 3x^3 + 8$
18225.a.18225.1 18225.a \( 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[196,1305,73965,9600]$ $[147,411,-401,-56967,18225]$ $[\frac{282475249}{75},\frac{16117913}{225},-\frac{962801}{2025}]$ $y^2 + (x^3 + 1)y = 1$
46656.c.93312.1 46656.c \( 2^{6} \cdot 3^{6} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[44,9,357,48]$ $[132,672,-1264,-154608,93312]$ $[\frac{1288408}{3},\frac{149072}{9},-\frac{19118}{81}]$ $y^2 + x^3y = x^3 - 1$
62208.n.746496.1 62208.n \( 2^{8} \cdot 3^{5} \) $0$ $\Z/6\Z$ \(\mathrm{M}_2(\Q)\) $[142,1368,47940,-12]$ $[852,-2586,-2596,-2224797,-746496]$ $[-\frac{1804229351}{3},\frac{154259641}{72},\frac{3271609}{1296}]$ $y^2 = x^6 - 3x^3 + 2$
72900.a.291600.1 72900.a \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[184,1845,87015,150]$ $[552,1626,-1616,-883977,291600]$ $[\frac{13181630464}{75},\frac{211024448}{225},-\frac{3419456}{2025}]$ $y^2 + y = x^6 - 2x^3 + 1$
72900.b.291600.1 72900.b \( 2^{2} \cdot 3^{6} \cdot 5^{2} \) $0$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[184,1845,87015,150]$ $[552,1626,-1616,-883977,291600]$ $[\frac{13181630464}{75},\frac{211024448}{225},-\frac{3419456}{2025}]$ $y^2 + x^3y = 2x^3 + 5$
104976.a.104976.1 104976.a \( 2^{4} \cdot 3^{8} \) $1$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[104,837,21105,-54]$ $[312,-966,-976,-309417,-104976]$ $[-\frac{760408064}{27},\frac{22637888}{81},\frac{659776}{729}]$ $y^2 + y = -x^6 - 2x^3 - 1$
104976.b.104976.1 104976.b \( 2^{4} \cdot 3^{8} \) $0$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[104,837,21105,-54]$ $[312,-966,-976,-309417,-104976]$ $[-\frac{760408064}{27},\frac{22637888}{81},\frac{659776}{729}]$ $y^2 + x^3y = 2x^3 + 3$
107163.a.321489.1 107163.a \( 3^{7} \cdot 7^{2} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[740,38745,7033005,-169344]$ $[555,-1695,-1705,-954825,-321489]$ $[-\frac{216699865625}{1323},\frac{3577368125}{3969},\frac{58353625}{35721}]$ $y^2 + (x^3 + 1)y = -x^6 + 2x^3 - 2$
123201.a.123201.1 123201.a \( 3^{6} \cdot 13^{2} \) $0$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[484,11817,1489605,64896]$ $[363,1059,-1049,-375567,123201]$ $[\frac{25937424601}{507},\frac{625361033}{1521},-\frac{15358409}{13689}]$ $y^2 + (x^3 + 1)y = x^3 + 3$
139968.b.839808.1 139968.b \( 2^{6} \cdot 3^{7} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[116,513,16623,432]$ $[348,1968,-3856,-1303728,839808]$ $[\frac{164089192}{27},\frac{7999592}{81},-\frac{405362}{729}]$ $y^2 + x^3y = x^3 + 3$
142884.a.285768.1 142884.a \( 2^{2} \cdot 3^{6} \cdot 7^{2} \) $0$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[284,1953,181167,150528]$ $[213,1158,-2236,-454308,285768]$ $[\frac{1804229351}{1176},\frac{69076823}{1764},-\frac{2817919}{7938}]$ $y^2 + (x^3 + 1)y = -2$
248832.d.746496.1 248832.d \( 2^{10} \cdot 3^{5} \) $0$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[142,1368,47940,-12]$ $[852,-2586,-2596,-2224797,-746496]$ $[-\frac{1804229351}{3},\frac{154259641}{72},\frac{3271609}{1296}]$ $y^2 = -x^6 - 3x^3 - 2$
321489.a.321489.1 321489.a \( 3^{8} \cdot 7^{2} \) $0$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[740,38745,7033005,-169344]$ $[555,-1695,-1705,-954825,-321489]$ $[-\frac{216699865625}{1323},\frac{3577368125}{3969},\frac{58353625}{35721}]$ $y^2 + (x^3 + 1)y = 2x^3 + 5$
419904.e.839808.1 419904.e \( 2^{6} \cdot 3^{8} \) $1$ $\mathsf{trivial}$ \(\mathrm{M}_2(\Q)\) $[116,513,16623,432]$ $[348,1968,-3856,-1303728,839808]$ $[\frac{164089192}{27},\frac{7999592}{81},-\frac{405362}{729}]$ $y^2 + y = -x^6 - x^3 - 1$
613089.b.613089.1 613089.b \( 3^{6} \cdot 29^{2} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[1060,63945,17229045,322944]$ $[795,2355,-2345,-1852575,613089]$ $[\frac{1306860915625}{2523},\frac{14608555625}{7569},-\frac{164677625}{68121}]$ $y^2 + (x^3 + 1)y = 2x^3 + 7$
  displayed columns for results