Learn more

Refine search


Results (17 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
4608.c.27648.1 4608.c \( 2^{9} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[24,-72,-180,108]$ $[48,288,-1024,-33024,27648]$ $[9216,1152,-\frac{256}{3}]$ $y^2 = x^5 - x^4 + x^2 - x$
4608.c.884736.1 4608.c \( 2^{9} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[1140,1197,445455,108]$ $[4560,853632,210319360,57592172544,884736]$ $[2228489100000,91485342000,\frac{14829158000}{3}]$ $y^2 = 2x^5 + 7x^4 - 2x^3 - 13x^2 + 10x - 2$
4608.c.884736.2 4608.c \( 2^{9} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/4\Z$ \(\mathrm{M}_2(\Q)\) $[1140,1197,445455,108]$ $[4560,853632,210319360,57592172544,884736]$ $[2228489100000,91485342000,\frac{14829158000}{3}]$ $y^2 = 2x^5 - 7x^4 - 2x^3 + 13x^2 + 10x + 2$
8192.a.32768.1 8192.a \( 2^{13} \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[67,82,1930,4]$ $[268,2118,-124,-1129789,32768]$ $[\frac{1350125107}{32},\frac{318508017}{256},-\frac{139159}{512}]$ $y^2 = x^5 - 3x^3 + 2x$
8192.a.131072.1 8192.a \( 2^{13} \) $0$ $\Z/8\Z$ \(\mathrm{M}_2(\Q)\) $[472,7942,1038800,16]$ $[1888,63808,910336,-588186624,131072]$ $[183020620544,3276205808,24756872]$ $y^2 + y = 4x^5 + 15x^4 + 8x^3 - 3x^2 - x$
12544.g.175616.1 12544.g \( 2^{8} \cdot 7^{2} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[8,-203,455,686]$ $[16,552,-5632,-98704,175616]$ $[\frac{2048}{343},\frac{4416}{343},-\frac{2816}{343}]$ $y^2 + x^3y = x^5 + x^4 - 2x^2 - 4x - 2$
12800.c.128000.1 12800.c \( 2^{9} \cdot 5^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[104,280,9140,500]$ $[208,1056,-1024,-332032,128000]$ $[\frac{380204032}{125},\frac{9280128}{125},-\frac{43264}{125}]$ $y^2 = x^5 - 3x^4 + 3x^2 - x$
16384.a.32768.1 16384.a \( 2^{14} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[67,82,1930,4]$ $[268,2118,-124,-1129789,32768]$ $[\frac{1350125107}{32},\frac{318508017}{256},-\frac{139159}{512}]$ $y^2 = x^5 + 3x^3 + 2x$
20736.l.373248.1 20736.l \( 2^{8} \cdot 3^{4} \) $0$ $\Z/2\Z\oplus\Z/6\Z$ \(\mathsf{QM}\) $[146,738,29472,6]$ $[876,14262,207364,-5438445,373248]$ $[\frac{4146143186}{3},\frac{924693409}{36},\frac{276260689}{648}]$ $y^2 + y = 6x^5 + 9x^4 - x^3 - 3x^2$
73728.c.884736.1 73728.c \( 2^{13} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[195,630,44910,108]$ $[780,18630,-380,-86843325,884736]$ $[\frac{10442615625}{32},\frac{2558131875}{256},-\frac{401375}{1536}]$ $y^2 = x^5 + 5x^3 + 6x$
73728.d.884736.1 73728.d \( 2^{13} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[195,630,44910,108]$ $[780,18630,-380,-86843325,884736]$ $[\frac{10442615625}{32},\frac{2558131875}{256},-\frac{401375}{1536}]$ $y^2 = 2x^5 - 5x^3 + 3x$
147456.c.884736.1 147456.c \( 2^{14} \cdot 3^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[195,630,44910,108]$ $[780,18630,-380,-86843325,884736]$ $[\frac{10442615625}{32},\frac{2558131875}{256},-\frac{401375}{1536}]$ $y^2 = 2x^5 + 5x^3 + 3x$
147456.e.884736.1 147456.e \( 2^{14} \cdot 3^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[195,630,44910,108]$ $[780,18630,-380,-86843325,884736]$ $[\frac{10442615625}{32},\frac{2558131875}{256},-\frac{401375}{1536}]$ $y^2 = x^5 - 5x^3 + 6x$
262144.b.524288.1 262144.b \( 2^{18} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[26,-2,40,2]$ $[208,1888,-2304,-1010944,524288]$ $[742586,\frac{129623}{4},-\frac{1521}{8}]$ $y^2 = x^5 + 2x^3 + 2x$
262144.c.524288.1 262144.c \( 2^{18} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[26,-2,40,2]$ $[208,1888,-2304,-1010944,524288]$ $[742586,\frac{129623}{4},-\frac{1521}{8}]$ $y^2 = x^5 - 2x^3 + 2x$
331776.e.995328.1 331776.e \( 2^{12} \cdot 3^{4} \) $0$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[58,28,856,16]$ $[348,4374,-1836,-4942701,995328]$ $[\frac{20511149}{4},\frac{5926527}{32},-\frac{14297}{64}]$ $y^2 = x^5 + 3x^3 + 3x$
331776.g.995328.1 331776.g \( 2^{12} \cdot 3^{4} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[58,28,856,16]$ $[348,4374,-1836,-4942701,995328]$ $[\frac{20511149}{4},\frac{5926527}{32},-\frac{14297}{64}]$ $y^2 = x^5 - 3x^3 + 3x$
  displayed columns for results