Learn more

Refine search


Results (9 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
8192.b.131072.1 8192.b \( 2^{13} \) $0$ $\Z/2\Z\oplus\Z/2\Z\oplus\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[64,76,1552,16]$ $[256,1920,8192,-397312,131072]$ $[8388608,245760,4096]$ $y^2 = x^5 - 3x^4 + 6x^2 - 4x$
102400.b.102400.1 102400.b \( 2^{12} \cdot 5^{2} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[34,-116,-424,400]$ $[68,502,-2100,-98701,102400]$ $[\frac{1419857}{100},\frac{1233163}{800},-\frac{6069}{64}]$ $y^2 = x^5 - x^3 - x$
186624.d.373248.1 186624.d \( 2^{8} \cdot 3^{6} \) $1$ $\Z/3\Z$ \(\mathrm{M}_2(\Q)\) $[32,117,879,-6]$ $[192,-1272,-2624,-530448,-373248]$ $[-\frac{2097152}{3},\frac{217088}{9},\frac{20992}{81}]$ $y^2 + x^3y = 2x^3 + 2$
262144.a.262144.1 262144.a \( 2^{18} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[4,-14,2,1]$ $[32,640,-6144,-151552,262144]$ $[128,80,-24]$ $y^2 = x^5 - 2x^3 - x$
262144.d.524288.1 262144.d \( 2^{18} \) $1$ $\Z/2\Z$ \(\mathsf{QM}\) $[42,-18,-324,2]$ $[336,5472,163584,6255360,524288]$ $[8168202,\frac{1583631}{4},\frac{281799}{8}]$ $y^2 = x^5 - x^4 + 4x^3 - 8x^2 + 5x - 1$
262144.d.524288.2 262144.d \( 2^{18} \) $1$ $\Z/2\Z$ \(\mathsf{QM}\) $[42,-18,-324,2]$ $[336,5472,163584,6255360,524288]$ $[8168202,\frac{1583631}{4},\frac{281799}{8}]$ $y^2 = x^5 + x^4 + 4x^3 + 8x^2 + 5x + 1$
589824.c.589824.1 589824.c \( 2^{16} \cdot 3^{2} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[196,892,55928,72]$ $[784,16096,5888,-63616256,589824]$ $[\frac{4519603984}{9},\frac{118354894}{9},\frac{55223}{9}]$ $y^2 = x^5 - 2x^4 - 4x^3 + 8x^2 + x - 2$
589824.c.589824.2 589824.c \( 2^{16} \cdot 3^{2} \) $1$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[196,892,55928,72]$ $[784,16096,5888,-63616256,589824]$ $[\frac{4519603984}{9},\frac{118354894}{9},\frac{55223}{9}]$ $y^2 = x^5 + 2x^4 - 4x^3 - 8x^2 + x + 2$
692224.a.692224.1 692224.a \( 2^{12} \cdot 13^{2} \) $0$ $\Z/2\Z$ \(\mathrm{M}_2(\Q)\) $[14,-404,-3928,-2704]$ $[28,1110,19604,-170797,-692224]$ $[-\frac{16807}{676},-\frac{190365}{5408},-\frac{1421}{64}]$ $y^2 = x^5 - 3x^3 - x$
  displayed columns for results