Label |
Class |
Conductor |
Discriminant |
Rank* |
2-Selmer rank |
Torsion |
$\textrm{End}^0(J_{\overline\Q})$ |
$\textrm{End}^0(J)$ |
$\GL_2\textsf{-type}$ |
Sato-Tate |
Nonmaximal primes |
$\Q$-simple |
\(\overline{\Q}\)-simple |
\(\Aut(X)\) |
\(\Aut(X_{\overline{\Q}})\) |
$\Q$-points |
$\Q$-Weierstrass points |
mod-$\ell$ images |
Locally solvable |
Square Ш* |
Analytic Ш* |
Tamagawa |
Regulator |
Real period |
Leading coefficient |
Igusa-Clebsch invariants |
Igusa invariants |
G2-invariants |
Equation |
249.a.249.1 |
249.a |
\( 3 \cdot 83 \) |
\( 3 \cdot 83 \) |
$0$ |
$1$ |
$\Z/14\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(25.783703\) |
\(0.131550\) |
$[108,57,2259,-31872]$ |
$[27,28,32,20,-249]$ |
$[-\frac{4782969}{83},-\frac{183708}{83},-\frac{7776}{83}]$ |
$y^2 + (x^3 + 1)y = x^2 + x$ |
249.a.6723.1 |
249.a |
\( 3 \cdot 83 \) |
\( - 3^{4} \cdot 83 \) |
$0$ |
$1$ |
$\Z/28\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(25.783703\) |
\(0.131550\) |
$[1932,87897,65765571,860544]$ |
$[483,6058,-161212,-28641190,6723]$ |
$[\frac{324526850403}{83},\frac{25281736298}{249},-\frac{4178776252}{747}]$ |
$y^2 + (x^3 + 1)y = -x^5 + x^3 + x^2 + 3x + 2$ |
277.a.277.1 |
277.a |
\( 277 \) |
\( 277 \) |
$0$ |
$0$ |
$\Z/15\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$1$ |
2.6.1, 3.80.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(32.205749\) |
\(0.143137\) |
$[64,352,9552,-1108]$ |
$[32,-16,-464,-3776,-277]$ |
$[-\frac{33554432}{277},\frac{524288}{277},\frac{475136}{277}]$ |
$y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x$ |
277.a.277.2 |
277.a |
\( 277 \) |
\( 277 \) |
$0$ |
$0$ |
$\Z/5\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$1$ |
$1$ |
2.6.1, 3.80.2 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(3.578417\) |
\(0.143137\) |
$[4480,1370512,1511819744,-1108]$ |
$[2240,-19352,164384,-1569936,-277]$ |
$[-\frac{56394933862400000}{277},\frac{217505333248000}{277},-\frac{824813158400}{277}]$ |
$y^2 + y = x^5 - 9x^4 + 14x^3 - 19x^2 + 11x - 6$ |
295.a.295.1 |
295.a |
\( 5 \cdot 59 \) |
\( - 5 \cdot 59 \) |
$0$ |
$1$ |
$\Z/14\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(29.256600\) |
\(0.149268\) |
$[108,-39,20835,37760]$ |
$[27,32,-256,-1984,295]$ |
$[\frac{14348907}{295},\frac{629856}{295},-\frac{186624}{295}]$ |
$y^2 + (x^3 + 1)y = -x^2$ |
295.a.295.2 |
295.a |
\( 5 \cdot 59 \) |
\( - 5 \cdot 59 \) |
$0$ |
$1$ |
$\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$1$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.597073\) |
\(0.149268\) |
$[198804,305807001,18482629056189,-37760]$ |
$[49701,90182600,203402032096,494095763610824,-295]$ |
$[-\frac{303267334973269931148501}{295},-\frac{2214359494206283568520}{59},-\frac{502441543825401014496}{295}]$ |
$y^2 + (x^2 + x + 1)y = x^5 - 40x^3 + 22x^2 + 389x - 608$ |
349.a.349.1 |
349.a |
\( 349 \) |
\( 349 \) |
$0$ |
$0$ |
$\Z/13\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,13$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(27.988484\) |
\(0.165612\) |
$[8,208,1464,-1396]$ |
$[4,-34,-124,-413,-349]$ |
$[-\frac{1024}{349},\frac{2176}{349},\frac{1984}{349}]$ |
$y^2 + (x^3 + x^2 + x + 1)y = -x^3 - x^2$ |
353.a.353.1 |
353.a |
\( 353 \) |
\( -353 \) |
$0$ |
$0$ |
$\Z/11\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,11$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$0$ |
2.10.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(22.495495\) |
\(0.185913\) |
$[188,817,30871,45184]$ |
$[47,58,256,2167,353]$ |
$[\frac{229345007}{353},\frac{6021734}{353},\frac{565504}{353}]$ |
$y^2 + (x^3 + x + 1)y = x^2$ |
388.a.776.1 |
388.a |
\( 2^{2} \cdot 97 \) |
\( 2^{3} \cdot 97 \) |
$0$ |
$0$ |
$\Z/21\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,3,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$0$ |
2.10.1, 3.80.1 |
✓ |
✓ |
$1$ |
\( 3 \) |
\(1.000000\) |
\(29.135501\) |
\(0.198201\) |
$[36,1569,-13743,99328]$ |
$[9,-62,356,-160,776]$ |
$[\frac{59049}{776},-\frac{22599}{388},\frac{7209}{194}]$ |
$y^2 + (x^3 + x + 1)y = -x^4 + 2x^2 + x$ |
389.a.389.1 |
389.a |
\( 389 \) |
\( 389 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(19.798620\) |
\(0.197986\) |
$[2440,51100,45041351,1556]$ |
$[1220,53500,2084961,-79649395,389]$ |
$[\frac{2702708163200000}{389},\frac{97147868000000}{389},\frac{3103255952400}{389}]$ |
$y^2 + (x^3 + x)y = x^5 - 2x^4 - 8x^3 + 16x + 7$ |
389.a.389.2 |
389.a |
\( 389 \) |
\( 389 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(19.798620\) |
\(0.197986\) |
$[16,100,1775,1556]$ |
$[8,-14,-159,-367,389]$ |
$[\frac{32768}{389},-\frac{7168}{389},-\frac{10176}{389}]$ |
$y^2 + (x + 1)y = x^5 + 2x^4 + 2x^3 + x^2$ |
394.a.394.1 |
394.a |
\( 2 \cdot 197 \) |
\( 2 \cdot 197 \) |
$0$ |
$1$ |
$\Z/10\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(20.078274\) |
\(0.200783\) |
$[11032,106300,393913607,1576]$ |
$[5516,1250044,371875905,122164372511,394]$ |
$[12960598758485504,532478222573696,28717744887720]$ |
$y^2 + (x^3 + x)y = 2x^5 + x^4 - 12x^3 + 17x - 9$ |
394.a.3152.1 |
394.a |
\( 2 \cdot 197 \) |
\( 2^{4} \cdot 197 \) |
$0$ |
$1$ |
$\Z/20\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,5$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$6$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(20.078274\) |
\(0.200783\) |
$[80,-20,649,-12608]$ |
$[40,70,39,-835,-3152]$ |
$[-\frac{6400000}{197},-\frac{280000}{197},-\frac{3900}{197}]$ |
$y^2 + (x + 1)y = -x^5$ |
427.a.2989.1 |
427.a |
\( 7 \cdot 61 \) |
\( - 7^{2} \cdot 61 \) |
$0$ |
$1$ |
$\Z/14\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$4$ |
$2$ |
2.30.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(18.613176\) |
\(0.189930\) |
$[4564,-22439,-35962915,-382592]$ |
$[1141,55180,3641688,277583402,-2989]$ |
$[-\frac{39466820645749}{61},-\frac{1672794336220}{61},-\frac{96756008472}{61}]$ |
$y^2 + (x^3 + 1)y = x^5 - x^4 - 5x^3 + 4x^2 + 4x - 4$ |
461.a.461.1 |
461.a |
\( 461 \) |
\( 461 \) |
$0$ |
$0$ |
$\Z/7\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(12.048435\) |
\(0.245886\) |
$[1176,144,66456,1844]$ |
$[588,14382,467132,16957923,461]$ |
$[\frac{70288881159168}{461},\frac{2923824242304}{461},\frac{161508086208}{461}]$ |
$y^2 + x^3y = x^5 - 3x^3 + 3x - 2$ |
461.a.461.2 |
461.a |
\( 461 \) |
\( 461 \) |
$0$ |
$0$ |
$\mathsf{trivial}$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2,7$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$1$ |
$1$ |
2.6.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(0.245886\) |
\(0.245886\) |
$[80664,166117104,3752725952952,1844]$ |
$[40332,40091742,45075737276,52661714805267,461]$ |
$[\frac{106720731303787612818432}{461},\frac{2630293443843585469056}{461},\frac{73323359651716069824}{461}]$ |
$y^2 + y = x^5 - x^4 - 39x^3 + 10x^2 + 272x - 306$ |
464.a.464.1 |
464.a |
\( 2^{4} \cdot 29 \) |
\( 2^{4} \cdot 29 \) |
$0$ |
$1$ |
$\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 1 \) |
\(1.000000\) |
\(14.421431\) |
\(0.225335\) |
$[136,280,15060,1856]$ |
$[68,146,-64,-6417,464]$ |
$[\frac{90870848}{29},\frac{2869192}{29},-\frac{18496}{29}]$ |
$y^2 + (x + 1)y = -x^6 - 2x^5 - 2x^4 - x^3$ |
464.a.29696.1 |
464.a |
\( 2^{4} \cdot 29 \) |
\( - 2^{10} \cdot 29 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$3$ |
2.120.3 |
✓ |
✓ |
$1$ |
\( 2^{2} \) |
\(1.000000\) |
\(14.421431\) |
\(0.225335\) |
$[680,-5255,-1253953,-3712]$ |
$[680,22770,1180736,71106895,-29696]$ |
$[-\frac{141985700000}{29},-\frac{6991813125}{29},-\frac{533176100}{29}]$ |
$y^2 + (x + 1)y = 8x^5 + 3x^4 - 4x^3 - 2x^2$ |
464.a.29696.2 |
464.a |
\( 2^{4} \cdot 29 \) |
\( - 2^{10} \cdot 29 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$3$ |
2.120.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(1.802679\) |
\(0.225335\) |
$[45368,202225,3012190355,-3712]$ |
$[45368,85625826,215176422416,607585463496703,-29696]$ |
$[-\frac{187693059992988715232}{29},-\frac{7808250185554819143}{29},-\frac{432507850151022641}{29}]$ |
$y^2 + xy = 4x^5 + 33x^4 + 72x^3 + 16x^2 + x$ |
472.a.944.1 |
472.a |
\( 2^{3} \cdot 59 \) |
\( - 2^{4} \cdot 59 \) |
$0$ |
$2$ |
$\Z/2\Z\oplus\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$5$ |
$3$ |
2.120.3 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(29.113273\) |
\(0.227447\) |
$[280,760,60604,-3776]$ |
$[140,690,4544,40015,-944]$ |
$[-\frac{3361400000}{59},-\frac{118335000}{59},-\frac{5566400}{59}]$ |
$y^2 + (x^2 + 1)y = x^5 - x^4 - 2x^3 + x$ |
472.a.60416.1 |
472.a |
\( 2^{3} \cdot 59 \) |
\( 2^{10} \cdot 59 \) |
$0$ |
$1$ |
$\Z/8\Z$ |
\(\Q\) |
\(\Q\) |
|
$\mathrm{USp}(4)$ |
$2$ |
✓ |
✓ |
$C_2$ |
$C_2$ |
$3$ |
$1$ |
2.60.1 |
✓ |
✓ |
$1$ |
\( 2 \) |
\(1.000000\) |
\(7.278318\) |
\(0.227447\) |
$[152,17065,1592025,7552]$ |
$[152,-10414,-926656,-62325777,60416]$ |
$[\frac{79235168}{59},-\frac{35714813}{59},-\frac{20907676}{59}]$ |
$y^2 + (x + 1)y = 8x^5 + 5x^4 + 4x^3 + 2x^2$ |