Learn more

Refine search


Results (21 matches)

  displayed columns for results
Label Class Conductor Rank* Torsion $\textrm{End}^0(J_{\overline\Q})$ Igusa-Clebsch invariants Igusa invariants G2-invariants Equation
249.a.249.1 249.a \( 3 \cdot 83 \) $0$ $\Z/14\Z$ \(\Q\) $[108,57,2259,-31872]$ $[27,28,32,20,-249]$ $[-\frac{4782969}{83},-\frac{183708}{83},-\frac{7776}{83}]$ $y^2 + (x^3 + 1)y = x^2 + x$
249.a.6723.1 249.a \( 3 \cdot 83 \) $0$ $\Z/28\Z$ \(\Q\) $[1932,87897,65765571,860544]$ $[483,6058,-161212,-28641190,6723]$ $[\frac{324526850403}{83},\frac{25281736298}{249},-\frac{4178776252}{747}]$ $y^2 + (x^3 + 1)y = -x^5 + x^3 + x^2 + 3x + 2$
277.a.277.1 277.a \( 277 \) $0$ $\Z/15\Z$ \(\Q\) $[64,352,9552,-1108]$ $[32,-16,-464,-3776,-277]$ $[-\frac{33554432}{277},\frac{524288}{277},\frac{475136}{277}]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^2 - x$
277.a.277.2 277.a \( 277 \) $0$ $\Z/5\Z$ \(\Q\) $[4480,1370512,1511819744,-1108]$ $[2240,-19352,164384,-1569936,-277]$ $[-\frac{56394933862400000}{277},\frac{217505333248000}{277},-\frac{824813158400}{277}]$ $y^2 + y = x^5 - 9x^4 + 14x^3 - 19x^2 + 11x - 6$
295.a.295.1 295.a \( 5 \cdot 59 \) $0$ $\Z/14\Z$ \(\Q\) $[108,-39,20835,37760]$ $[27,32,-256,-1984,295]$ $[\frac{14348907}{295},\frac{629856}{295},-\frac{186624}{295}]$ $y^2 + (x^3 + 1)y = -x^2$
295.a.295.2 295.a \( 5 \cdot 59 \) $0$ $\Z/2\Z$ \(\Q\) $[198804,305807001,18482629056189,-37760]$ $[49701,90182600,203402032096,494095763610824,-295]$ $[-\frac{303267334973269931148501}{295},-\frac{2214359494206283568520}{59},-\frac{502441543825401014496}{295}]$ $y^2 + (x^2 + x + 1)y = x^5 - 40x^3 + 22x^2 + 389x - 608$
349.a.349.1 349.a \( 349 \) $0$ $\Z/13\Z$ \(\Q\) $[8,208,1464,-1396]$ $[4,-34,-124,-413,-349]$ $[-\frac{1024}{349},\frac{2176}{349},\frac{1984}{349}]$ $y^2 + (x^3 + x^2 + x + 1)y = -x^3 - x^2$
353.a.353.1 353.a \( 353 \) $0$ $\Z/11\Z$ \(\Q\) $[188,817,30871,45184]$ $[47,58,256,2167,353]$ $[\frac{229345007}{353},\frac{6021734}{353},\frac{565504}{353}]$ $y^2 + (x^3 + x + 1)y = x^2$
388.a.776.1 388.a \( 2^{2} \cdot 97 \) $0$ $\Z/21\Z$ \(\Q\) $[36,1569,-13743,99328]$ $[9,-62,356,-160,776]$ $[\frac{59049}{776},-\frac{22599}{388},\frac{7209}{194}]$ $y^2 + (x^3 + x + 1)y = -x^4 + 2x^2 + x$
389.a.389.1 389.a \( 389 \) $0$ $\Z/10\Z$ \(\Q\) $[2440,51100,45041351,1556]$ $[1220,53500,2084961,-79649395,389]$ $[\frac{2702708163200000}{389},\frac{97147868000000}{389},\frac{3103255952400}{389}]$ $y^2 + (x^3 + x)y = x^5 - 2x^4 - 8x^3 + 16x + 7$
389.a.389.2 389.a \( 389 \) $0$ $\Z/10\Z$ \(\Q\) $[16,100,1775,1556]$ $[8,-14,-159,-367,389]$ $[\frac{32768}{389},-\frac{7168}{389},-\frac{10176}{389}]$ $y^2 + (x + 1)y = x^5 + 2x^4 + 2x^3 + x^2$
394.a.394.1 394.a \( 2 \cdot 197 \) $0$ $\Z/10\Z$ \(\Q\) $[11032,106300,393913607,1576]$ $[5516,1250044,371875905,122164372511,394]$ $[12960598758485504,532478222573696,28717744887720]$ $y^2 + (x^3 + x)y = 2x^5 + x^4 - 12x^3 + 17x - 9$
394.a.3152.1 394.a \( 2 \cdot 197 \) $0$ $\Z/20\Z$ \(\Q\) $[80,-20,649,-12608]$ $[40,70,39,-835,-3152]$ $[-\frac{6400000}{197},-\frac{280000}{197},-\frac{3900}{197}]$ $y^2 + (x + 1)y = -x^5$
427.a.2989.1 427.a \( 7 \cdot 61 \) $0$ $\Z/14\Z$ \(\Q\) $[4564,-22439,-35962915,-382592]$ $[1141,55180,3641688,277583402,-2989]$ $[-\frac{39466820645749}{61},-\frac{1672794336220}{61},-\frac{96756008472}{61}]$ $y^2 + (x^3 + 1)y = x^5 - x^4 - 5x^3 + 4x^2 + 4x - 4$
461.a.461.1 461.a \( 461 \) $0$ $\Z/7\Z$ \(\Q\) $[1176,144,66456,1844]$ $[588,14382,467132,16957923,461]$ $[\frac{70288881159168}{461},\frac{2923824242304}{461},\frac{161508086208}{461}]$ $y^2 + x^3y = x^5 - 3x^3 + 3x - 2$
461.a.461.2 461.a \( 461 \) $0$ $\mathsf{trivial}$ \(\Q\) $[80664,166117104,3752725952952,1844]$ $[40332,40091742,45075737276,52661714805267,461]$ $[\frac{106720731303787612818432}{461},\frac{2630293443843585469056}{461},\frac{73323359651716069824}{461}]$ $y^2 + y = x^5 - x^4 - 39x^3 + 10x^2 + 272x - 306$
464.a.464.1 464.a \( 2^{4} \cdot 29 \) $0$ $\Z/8\Z$ \(\Q\) $[136,280,15060,1856]$ $[68,146,-64,-6417,464]$ $[\frac{90870848}{29},\frac{2869192}{29},-\frac{18496}{29}]$ $y^2 + (x + 1)y = -x^6 - 2x^5 - 2x^4 - x^3$
464.a.29696.1 464.a \( 2^{4} \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q\) $[680,-5255,-1253953,-3712]$ $[680,22770,1180736,71106895,-29696]$ $[-\frac{141985700000}{29},-\frac{6991813125}{29},-\frac{533176100}{29}]$ $y^2 + (x + 1)y = 8x^5 + 3x^4 - 4x^3 - 2x^2$
464.a.29696.2 464.a \( 2^{4} \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ \(\Q\) $[45368,202225,3012190355,-3712]$ $[45368,85625826,215176422416,607585463496703,-29696]$ $[-\frac{187693059992988715232}{29},-\frac{7808250185554819143}{29},-\frac{432507850151022641}{29}]$ $y^2 + xy = 4x^5 + 33x^4 + 72x^3 + 16x^2 + x$
472.a.944.1 472.a \( 2^{3} \cdot 59 \) $0$ $\Z/2\Z\oplus\Z/8\Z$ \(\Q\) $[280,760,60604,-3776]$ $[140,690,4544,40015,-944]$ $[-\frac{3361400000}{59},-\frac{118335000}{59},-\frac{5566400}{59}]$ $y^2 + (x^2 + 1)y = x^5 - x^4 - 2x^3 + x$
472.a.60416.1 472.a \( 2^{3} \cdot 59 \) $0$ $\Z/8\Z$ \(\Q\) $[152,17065,1592025,7552]$ $[152,-10414,-926656,-62325777,60416]$ $[\frac{79235168}{59},-\frac{35714813}{59},-\frac{20907676}{59}]$ $y^2 + (x + 1)y = 8x^5 + 5x^4 + 4x^3 + 2x^2$
  displayed columns for results