Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^3 + 1)y = -x^2 + x - 1$ | (homogenize, simplify) |
| $y^2 + (x^3 + z^3)y = -x^2z^4 + xz^5 - z^6$ | (dehomogenize, simplify) |
| $y^2 = x^6 + 2x^3 - 4x^2 + 4x - 3$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(834\) | \(=\) | \( 2 \cdot 3 \cdot 139 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(1668\) | \(=\) | \( 2^{2} \cdot 3 \cdot 139 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(372\) | \(=\) | \( 2^{2} \cdot 3 \cdot 31 \) |
| \( I_4 \) | \(=\) | \(3345\) | \(=\) | \( 3 \cdot 5 \cdot 223 \) |
| \( I_6 \) | \(=\) | \(401289\) | \(=\) | \( 3 \cdot 7 \cdot 97 \cdot 197 \) |
| \( I_{10} \) | \(=\) | \(213504\) | \(=\) | \( 2^{9} \cdot 3 \cdot 139 \) |
| \( J_2 \) | \(=\) | \(93\) | \(=\) | \( 3 \cdot 31 \) |
| \( J_4 \) | \(=\) | \(221\) | \(=\) | \( 13 \cdot 17 \) |
| \( J_6 \) | \(=\) | \(-111\) | \(=\) | \( - 3 \cdot 37 \) |
| \( J_8 \) | \(=\) | \(-14791\) | \(=\) | \( - 7 \cdot 2113 \) |
| \( J_{10} \) | \(=\) | \(1668\) | \(=\) | \( 2^{2} \cdot 3 \cdot 139 \) |
| \( g_1 \) | \(=\) | \(2318961231/556\) | ||
| \( g_2 \) | \(=\) | \(59254299/556\) | ||
| \( g_3 \) | \(=\) | \(-320013/556\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (1 : -1 : 0),\, (1 : -1 : 1)\)
Number of rational Weierstrass points: \(1\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{8}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(8\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -1 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-z^3\) | \(0\) | \(8\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : 0 : 1) - (1 : -1 : 0)\) | \(z (x - z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - z^3\) | \(0\) | \(8\) |
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(0\) |
| Mordell-Weil rank: | \(0\) |
| 2-Selmer rank: | \(1\) |
| Regulator: | \( 1 \) |
| Real period: | \( 11.76351 \) |
| Tamagawa product: | \( 2 \) |
| Torsion order: | \( 8 \) |
| Leading coefficient: | \( 0.367609 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(1\) | \(2\) | \(2\) | \(-1^*\) | \(( 1 - T )( 1 + T + 2 T^{2} )\) | yes | |
| \(3\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 3 T^{2} )\) | yes | |
| \(139\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 - 12 T + 139 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.60.1 | yes |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).