Properties

Label 727609.a.727609.1
Conductor $727609$
Discriminant $-727609$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $E_6$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\mathsf{CM}\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x + 1)y = -3x^5 + 11x^4 - 11x^3 + x$ (homogenize, simplify)
$y^2 + (x^3 + xz^2 + z^3)y = -3x^5z + 11x^4z^2 - 11x^3z^3 + xz^5$ (dehomogenize, simplify)
$y^2 = x^6 - 12x^5 + 46x^4 - 42x^3 + x^2 + 6x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 1, 0, -11, 11, -3]), R([1, 1, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 1, 0, -11, 11, -3], R![1, 1, 0, 1]);
 
sage: X = HyperellipticCurve(R([1, 6, 1, -42, 46, -12, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(727609\) \(=\) \( 853^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(-727609\) \(=\) \( - 853^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(3364\) \(=\)  \( 2^{2} \cdot 29^{2} \)
\( I_4 \)  \(=\) \(768553\) \(=\)  \( 17 \cdot 53 \cdot 853 \)
\( I_6 \)  \(=\) \(637949317\) \(=\)  \( 853 \cdot 747889 \)
\( I_{10} \)  \(=\) \(-93133952\) \(=\)  \( - 2^{7} \cdot 853^{2} \)
\( J_2 \)  \(=\) \(841\) \(=\)  \( 29^{2} \)
\( J_4 \)  \(=\) \(-2553\) \(=\)  \( - 3 \cdot 23 \cdot 37 \)
\( J_6 \)  \(=\) \(-2563\) \(=\)  \( - 11 \cdot 233 \)
\( J_8 \)  \(=\) \(-2168323\) \(=\)  \( -2168323 \)
\( J_{10} \)  \(=\) \(-727609\) \(=\)  \( - 853^{2} \)
\( g_1 \)  \(=\) \(-420707233300201/727609\)
\( g_2 \)  \(=\) \(1518583938513/727609\)
\( g_3 \)  \(=\) \(1812761203/727609\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_6$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $D_6$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : -1 : 1)\) \((1 : -2 : 1)\)
\((-1 : -3 : 4)\) \((-1 : -44 : 4)\) \((5 : -45 : 1)\) \((5 : -86 : 1)\) \((4 : -124 : 5)\) \((4 : -165 : 5)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : -1 : 1)\) \((1 : -2 : 1)\)
\((-1 : -3 : 4)\) \((-1 : -44 : 4)\) \((5 : -45 : 1)\) \((5 : -86 : 1)\) \((4 : -124 : 5)\) \((4 : -165 : 5)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\)
\((-1 : -41 : 4)\) \((-1 : 41 : 4)\) \((5 : -41 : 1)\) \((5 : 41 : 1)\) \((4 : -41 : 5)\) \((4 : 41 : 5)\)

magma: [C![-1,-44,4],C![-1,-3,4],C![0,-1,1],C![0,0,1],C![1,-2,1],C![1,-1,0],C![1,-1,1],C![1,0,0],C![4,-165,5],C![4,-124,5],C![5,-86,1],C![5,-45,1]]; // minimal model
 
magma: [C![-1,-41,4],C![-1,41,4],C![0,-1,1],C![0,1,1],C![1,-1,1],C![1,-1,0],C![1,1,1],C![1,1,0],C![4,-41,5],C![4,41,5],C![5,-41,1],C![5,41,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.255966\) \(\infty\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.255966\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : -1 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.255966\) \(\infty\)
\((1 : -1 : 1) - (1 : 0 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3\) \(0.255966\) \(\infty\)
Generator $D_0$ Height Order
\((0 : -1 : 1) + (1 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + xz^2 - z^3\) \(0.255966\) \(\infty\)
\((1 : 1 : 1) - (1 : 1 : 0)\) \(z (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(-x^3 + xz^2 + z^3\) \(0.255966\) \(\infty\)

2-torsion field: 6.0.46566976.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.049139 \)
Real period: \( 18.72177 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.919970 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(853\) \(2\) \(2\) \(1\) \(1 - 35 T + 853 T^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.40.3 no
\(3\) 3.480.12 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $E_6$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b)\) with defining polynomial:
  \(x^{6} - x^{5} - 355 x^{4} + 2164 x^{3} + 12951 x^{2} - 127278 x + 250479\)

Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{91753778777}{1310256} b^{5} - \frac{427172560315}{1310256} b^{4} + \frac{15100223464969}{655128} b^{3} - \frac{26896534681157}{1310256} b^{2} - \frac{223789793030201}{218376} b + \frac{224889490077251}{72792}\)
  \(g_6 = \frac{3723001140950777}{5241024} b^{5} + \frac{16647437391232375}{5241024} b^{4} - \frac{309666823897929449}{1310256} b^{3} + \frac{1131323133896869361}{5241024} b^{2} + \frac{9177326539137560825}{873504} b - \frac{18418535473094813119}{582336}\)
   Conductor norm: 1

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\C\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a)\) with defining polynomial \(x^{6} - x^{5} - 355 x^{4} + 2164 x^{3} + 12951 x^{2} - 127278 x + 250479\)

Not of \(\GL_2\)-type over \(\overline{\Q}\)

Endomorphism ring over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}})\)\(\simeq\)an Eichler order of index \(3\) in a maximal order of \(\End (J_{\overline{\Q}}) \otimes \Q\)
\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

Remainder of the endomorphism lattice by field

Over subfield \(F \simeq \) \(\Q(\sqrt{853}) \) with generator \(\frac{10}{81891} a^{5} + \frac{41}{81891} a^{4} - \frac{2431}{81891} a^{3} + \frac{17431}{81891} a^{2} - \frac{14851}{27297} a - \frac{124508}{9099}\) with minimal polynomial \(x^{2} - x - 213\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_3$
  Of \(\GL_2\)-type, simple

Over subfield \(F \simeq \) 3.3.727609.1 with generator \(-\frac{100}{9099} a^{5} - \frac{410}{9099} a^{4} + \frac{33409}{9099} a^{3} - \frac{46924}{9099} a^{2} - \frac{512684}{3033} a + \frac{564677}{1011}\) with minimal polynomial \(x^{3} - x^{2} - 284 x - 1011\):

\(\End (J_{F})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{-3}}{2}]\)
\(\End (J_{F}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{-3}) \)
\(\End (J_{F}) \otimes \R\)\(\simeq\) \(\C\)
  Sato Tate group: $E_2$
  Of \(\GL_2\)-type, simple

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);