Properties

Label 700569.b.700569.1
Conductor $700569$
Discriminant $700569$
Mordell-Weil group trivial
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{RM}\)
\(\End(J) \otimes \Q\) \(\mathsf{RM}\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + 1)y = x^6 - 6x^5 + 36x^3 - 51x^2 + 12x - 1$ (homogenize, simplify)
$y^2 + (x^3 + z^3)y = x^6 - 6x^5z + 36x^3z^3 - 51x^2z^4 + 12xz^5 - z^6$ (dehomogenize, simplify)
$y^2 = 5x^6 - 24x^5 + 146x^3 - 204x^2 + 48x - 3$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([-1, 12, -51, 36, 0, -6, 1]), R([1, 0, 0, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![-1, 12, -51, 36, 0, -6, 1], R![1, 0, 0, 1]);
 
sage: X = HyperellipticCurve(R([-3, 48, -204, 146, 0, -24, 5]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(700569\) \(=\) \( 3^{6} \cdot 31^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(700569\) \(=\) \( 3^{6} \cdot 31^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(14236\) \(=\)  \( 2^{2} \cdot 3559 \)
\( I_4 \)  \(=\) \(56241\) \(=\)  \( 3^{3} \cdot 2083 \)
\( I_6 \)  \(=\) \(268101783\) \(=\)  \( 3^{2} \cdot 401 \cdot 74287 \)
\( I_{10} \)  \(=\) \(369024\) \(=\)  \( 2^{7} \cdot 3 \cdot 31^{2} \)
\( J_2 \)  \(=\) \(10677\) \(=\)  \( 3 \cdot 3559 \)
\( J_4 \)  \(=\) \(4728840\) \(=\)  \( 2^{3} \cdot 3 \cdot 5 \cdot 157 \cdot 251 \)
\( J_6 \)  \(=\) \(2779512736\) \(=\)  \( 2^{5} \cdot 7 \cdot 11 \cdot 13 \cdot 19 \cdot 4567 \)
\( J_8 \)  \(=\) \(1828732434168\) \(=\)  \( 2^{3} \cdot 3 \cdot 14783 \cdot 5154379 \)
\( J_{10} \)  \(=\) \(700569\) \(=\)  \( 3^{6} \cdot 31^{2} \)
\( g_1 \)  \(=\) \(571005037946241799/2883\)
\( g_2 \)  \(=\) \(71058711666950120/8649\)
\( g_3 \)  \(=\) \(35206645259802016/77841\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

This curve has no rational points.
This curve has no rational points.
This curve has no rational points.

magma: []; // minimal model
 
magma: []; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: trivial

magma: MordellWeilGroupGenus2(Jacobian(C));
 

2-torsion field: 3.3.837.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(0\)
Mordell-Weil rank: \(0\)
2-Selmer rank:\(0\)
Regulator: \( 1 \)
Real period: \( 6.787071 \)
Tamagawa product: \( 1 \)
Torsion order:\( 1 \)
Leading coefficient: \( 6.787071 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(6\) \(6\) \(1\) \(1\)
\(31\) \(2\) \(2\) \(1\) \(( 1 - T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.120.2 no
\(3\) 3.72.2 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\sqrt{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{2}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);