Properties

Label 6081.b.164187.1
Conductor $6081$
Discriminant $164187$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{USp}(4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type no

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 + (x^3 + x^2 + 1)y = -2x^4 - 5x^3 + 5x + 2$ (homogenize, simplify)
$y^2 + (x^3 + x^2z + z^3)y = -2x^4z^2 - 5x^3z^3 + 5xz^5 + 2z^6$ (dehomogenize, simplify)
$y^2 = x^6 + 2x^5 - 7x^4 - 18x^3 + 2x^2 + 20x + 9$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([2, 5, 0, -5, -2]), R([1, 0, 1, 1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![2, 5, 0, -5, -2], R![1, 0, 1, 1]);
 
sage: X = HyperellipticCurve(R([9, 20, 2, -18, -7, 2, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(6081\) \(=\) \( 3 \cdot 2027 \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(164187\) \(=\) \( 3^{4} \cdot 2027 \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(804\) \(=\)  \( 2^{2} \cdot 3 \cdot 67 \)
\( I_4 \)  \(=\) \(62697\) \(=\)  \( 3 \cdot 20899 \)
\( I_6 \)  \(=\) \(11560485\) \(=\)  \( 3 \cdot 5 \cdot 797 \cdot 967 \)
\( I_{10} \)  \(=\) \(21015936\) \(=\)  \( 2^{7} \cdot 3^{4} \cdot 2027 \)
\( J_2 \)  \(=\) \(201\) \(=\)  \( 3 \cdot 67 \)
\( J_4 \)  \(=\) \(-929\) \(=\)  \( -929 \)
\( J_6 \)  \(=\) \(4093\) \(=\)  \( 4093 \)
\( J_8 \)  \(=\) \(-10087\) \(=\)  \( - 7 \cdot 11 \cdot 131 \)
\( J_{10} \)  \(=\) \(164187\) \(=\)  \( 3^{4} \cdot 2027 \)
\( g_1 \)  \(=\) \(4050375321/2027\)
\( g_2 \)  \(=\) \(-279408827/6081\)
\( g_3 \)  \(=\) \(18373477/18243\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((-1 : -1 : 1)\)
\((-2 : 0 : 1)\) \((-1 : 0 : 2)\) \((0 : -2 : 1)\) \((1 : -3 : 1)\) \((-2 : 3 : 1)\) \((-4 : 5 : 1)\)
\((-1 : -9 : 2)\) \((-4 : 42 : 1)\) \((-13 : 112 : 6)\) \((-13 : 855 : 6)\)
Known points
\((1 : 0 : 0)\) \((1 : -1 : 0)\) \((-1 : 0 : 1)\) \((0 : 1 : 1)\) \((1 : 0 : 1)\) \((-1 : -1 : 1)\)
\((-2 : 0 : 1)\) \((-1 : 0 : 2)\) \((0 : -2 : 1)\) \((1 : -3 : 1)\) \((-2 : 3 : 1)\) \((-4 : 5 : 1)\)
\((-1 : -9 : 2)\) \((-4 : 42 : 1)\) \((-13 : 112 : 6)\) \((-13 : 855 : 6)\)
Known points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((0 : -3 : 1)\) \((0 : 3 : 1)\)
\((1 : -3 : 1)\) \((1 : 3 : 1)\) \((-2 : -3 : 1)\) \((-2 : 3 : 1)\) \((-1 : -9 : 2)\) \((-1 : 9 : 2)\)
\((-4 : -37 : 1)\) \((-4 : 37 : 1)\) \((-13 : -743 : 6)\) \((-13 : 743 : 6)\)

magma: [C![-13,112,6],C![-13,855,6],C![-4,5,1],C![-4,42,1],C![-2,0,1],C![-2,3,1],C![-1,-9,2],C![-1,-1,1],C![-1,0,1],C![-1,0,2],C![0,-2,1],C![0,1,1],C![1,-3,1],C![1,-1,0],C![1,0,0],C![1,0,1]]; // minimal model
 
magma: [C![-13,-743,6],C![-13,743,6],C![-4,-37,1],C![-4,37,1],C![-2,-3,1],C![-2,3,1],C![-1,-9,2],C![-1,-1,1],C![-1,1,1],C![-1,9,2],C![0,-3,1],C![0,3,1],C![1,-3,1],C![1,-1,0],C![1,1,0],C![1,3,1]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((-1 : 0 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.080053\) \(\infty\)
\((-2 : 3 : 1) + (-1 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x + z) (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 - 3z^3\) \(0.044233\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 0 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(0\) \(0.080053\) \(\infty\)
\((-2 : 3 : 1) + (-1 : 0 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) \((x + z) (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-3xz^2 - 3z^3\) \(0.044233\) \(\infty\)
Generator $D_0$ Height Order
\((-1 : 1 : 1) + (1 : 3 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z + z^3\) \(0.080053\) \(\infty\)
\((-2 : 3 : 1) + (-1 : 1 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x + z) (x + 2z)\) \(=\) \(0,\) \(y\) \(=\) \(x^3 + x^2z - 6xz^2 - 5z^3\) \(0.044233\) \(\infty\)

2-torsion field: 6.2.129728.1

BSD invariants

Hasse-Weil conjecture: unverified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.003504 \)
Real period: \( 20.37907 \)
Tamagawa product: \( 4 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.285653 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(4\) \(4\) \(( 1 - T )( 1 + 3 T + 3 T^{2} )\)
\(2027\) \(1\) \(1\) \(1\) \(( 1 - T )( 1 - 52 T + 2027 T^{2} )\)

Galois representations

The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) .

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{USp}(4)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{USp}(4)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);