This is a model for the quotient of the modular curve $X_0(129)$ by the action of the group of order 4 generated by the Atkin-Lehner involutions $w_3$ and $w_{43}$. This quotient is also denoted $X_0^*(129)$.
Minimal equation
Minimal equation
Simplified equation
| $y^2 + y = x^6 - 3x^5 + x^4 + 3x^3 - x^2 - x$ | (homogenize, simplify) |
| $y^2 + z^3y = x^6 - 3x^5z + x^4z^2 + 3x^3z^3 - x^2z^4 - xz^5$ | (dehomogenize, simplify) |
| $y^2 = 4x^6 - 12x^5 + 4x^4 + 12x^3 - 4x^2 - 4x + 1$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(5547\) | \(=\) | \( 3 \cdot 43^{2} \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(16641\) | \(=\) | \( 3^{2} \cdot 43^{2} \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(520\) | \(=\) | \( 2^{3} \cdot 5 \cdot 13 \) |
| \( I_4 \) | \(=\) | \(6292\) | \(=\) | \( 2^{2} \cdot 11^{2} \cdot 13 \) |
| \( I_6 \) | \(=\) | \(896816\) | \(=\) | \( 2^{4} \cdot 23 \cdot 2437 \) |
| \( I_{10} \) | \(=\) | \(66564\) | \(=\) | \( 2^{2} \cdot 3^{2} \cdot 43^{2} \) |
| \( J_2 \) | \(=\) | \(260\) | \(=\) | \( 2^{2} \cdot 5 \cdot 13 \) |
| \( J_4 \) | \(=\) | \(1768\) | \(=\) | \( 2^{3} \cdot 13 \cdot 17 \) |
| \( J_6 \) | \(=\) | \(16776\) | \(=\) | \( 2^{3} \cdot 3^{2} \cdot 233 \) |
| \( J_8 \) | \(=\) | \(308984\) | \(=\) | \( 2^{3} \cdot 13 \cdot 2971 \) |
| \( J_{10} \) | \(=\) | \(16641\) | \(=\) | \( 3^{2} \cdot 43^{2} \) |
| \( g_1 \) | \(=\) | \(1188137600000/16641\) | ||
| \( g_2 \) | \(=\) | \(31074368000/16641\) | ||
| \( g_3 \) | \(=\) | \(126006400/1849\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2^2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2^2$ |
|
Rational points
| All points | |||||
|---|---|---|---|---|---|
| \((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((1 : 0 : 1)\) | \((-1 : 1 : 1)\) |
| \((1 : -1 : 1)\) | \((-1 : -2 : 1)\) | \((2 : 1 : 1)\) | \((2 : -2 : 1)\) | \((-5 : 20 : 7)\) | \((12 : 20 : 7)\) |
| \((-5 : -363 : 7)\) | \((12 : -363 : 7)\) | ||||
| All points | |||||
|---|---|---|---|---|---|
| \((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((1 : 0 : 1)\) | \((-1 : 1 : 1)\) |
| \((1 : -1 : 1)\) | \((-1 : -2 : 1)\) | \((2 : 1 : 1)\) | \((2 : -2 : 1)\) | \((-5 : 20 : 7)\) | \((12 : 20 : 7)\) |
| \((-5 : -363 : 7)\) | \((12 : -363 : 7)\) | ||||
| All points | |||||
|---|---|---|---|---|---|
| \((1 : -2 : 0)\) | \((1 : 2 : 0)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((1 : -1 : 1)\) | \((1 : 1 : 1)\) |
| \((-1 : -3 : 1)\) | \((-1 : 3 : 1)\) | \((2 : -3 : 1)\) | \((2 : 3 : 1)\) | \((-5 : -383 : 7)\) | \((-5 : 383 : 7)\) |
| \((12 : -383 : 7)\) | \((12 : 383 : 7)\) | ||||
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 0 : 1) + (2 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x (x - 2z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0.081387\) | \(\infty\) |
| \((-1 : -2 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - z^3\) | \(0.081387\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 0 : 1) + (2 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \(x (x - 2z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-xz^2\) | \(0.081387\) | \(\infty\) |
| \((-1 : -2 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - z^3\) | \(0.081387\) | \(\infty\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((0 : 1 : 1) + (2 : -3 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) | \(x (x - 2z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2xz^2 + z^3\) | \(0.081387\) | \(\infty\) |
| \((-1 : -3 : 1) + (1 : 1 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(2xz^2 - z^3\) | \(0.081387\) | \(\infty\) |
BSD invariants
| Hasse-Weil conjecture: | verified |
| Analytic rank: | \(2\) |
| Mordell-Weil rank: | \(2\) |
| 2-Selmer rank: | \(2\) |
| Regulator: | \( 0.006279 \) |
| Real period: | \( 24.46037 \) |
| Tamagawa product: | \( 2 \) |
| Torsion order: | \( 1 \) |
| Leading coefficient: | \( 0.307177 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(3\) | \(1\) | \(2\) | \(2\) | \(1\) | \(( 1 + T )( 1 + 2 T + 3 T^{2} )\) | yes | |
| \(43\) | \(2\) | \(2\) | \(1\) | \(1\) | \(( 1 + T )^{2}\) | yes |
Galois representations
For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.
For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.30.2 | no |
| \(3\) | 3.90.1 | no |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{SU}(2)\times\mathrm{SU}(2)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{SU}(2)\times\mathrm{SU}(2)\) |
Decomposition of the Jacobian
Splits over \(\Q\)
Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
Elliptic curve isogeny class 129.a
Elliptic curve isogeny class 43.a
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | an order of index \(2\) in \(\Z \times \Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) \(\times\) \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R \times \R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
Additional information
The set of rational points on this genus 2 curve with rank 2 Jacobian was computed by Bars--González--Xarles using 2-cover descent and elliptic Chabauty and Edixhoven--Lido using geometric quadratic Chabauty.