Properties

Label 5547.b.16641.1
Conductor $5547$
Discriminant $16641$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\Q \times \Q\)
\(\End(J) \otimes \Q\) \(\Q \times \Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

This is a model for the quotient of the modular curve $X_0(129)$ by the action of the group of order 4 generated by the Atkin-Lehner involutions $w_3$ and $w_{43}$. This quotient is also denoted $X_0^*(129)$.

Minimal equation

Minimal equation

Simplified equation

$y^2 + y = x^6 - 3x^5 + x^4 + 3x^3 - x^2 - x$ (homogenize, simplify)
$y^2 + z^3y = x^6 - 3x^5z + x^4z^2 + 3x^3z^3 - x^2z^4 - xz^5$ (dehomogenize, simplify)
$y^2 = 4x^6 - 12x^5 + 4x^4 + 12x^3 - 4x^2 - 4x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, -1, -1, 3, 1, -3, 1]), R([1]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, -1, -1, 3, 1, -3, 1], R![1]);
 
sage: X = HyperellipticCurve(R([1, -4, -4, 12, 4, -12, 4]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(5547\) \(=\) \( 3 \cdot 43^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(16641\) \(=\) \( 3^{2} \cdot 43^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(520\) \(=\)  \( 2^{3} \cdot 5 \cdot 13 \)
\( I_4 \)  \(=\) \(6292\) \(=\)  \( 2^{2} \cdot 11^{2} \cdot 13 \)
\( I_6 \)  \(=\) \(896816\) \(=\)  \( 2^{4} \cdot 23 \cdot 2437 \)
\( I_{10} \)  \(=\) \(66564\) \(=\)  \( 2^{2} \cdot 3^{2} \cdot 43^{2} \)
\( J_2 \)  \(=\) \(260\) \(=\)  \( 2^{2} \cdot 5 \cdot 13 \)
\( J_4 \)  \(=\) \(1768\) \(=\)  \( 2^{3} \cdot 13 \cdot 17 \)
\( J_6 \)  \(=\) \(16776\) \(=\)  \( 2^{3} \cdot 3^{2} \cdot 233 \)
\( J_8 \)  \(=\) \(308984\) \(=\)  \( 2^{3} \cdot 13 \cdot 2971 \)
\( J_{10} \)  \(=\) \(16641\) \(=\)  \( 3^{2} \cdot 43^{2} \)
\( g_1 \)  \(=\) \(1188137600000/16641\)
\( g_2 \)  \(=\) \(31074368000/16641\)
\( g_3 \)  \(=\) \(126006400/1849\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2^2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((-1 : -2 : 1)\) \((2 : 1 : 1)\) \((2 : -2 : 1)\) \((-5 : 20 : 7)\) \((12 : 20 : 7)\)
\((-5 : -363 : 7)\) \((12 : -363 : 7)\)
All points
\((1 : -1 : 0)\) \((1 : 1 : 0)\) \((0 : 0 : 1)\) \((0 : -1 : 1)\) \((1 : 0 : 1)\) \((-1 : 1 : 1)\)
\((1 : -1 : 1)\) \((-1 : -2 : 1)\) \((2 : 1 : 1)\) \((2 : -2 : 1)\) \((-5 : 20 : 7)\) \((12 : 20 : 7)\)
\((-5 : -363 : 7)\) \((12 : -363 : 7)\)
All points
\((1 : -2 : 0)\) \((1 : 2 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((1 : -1 : 1)\) \((1 : 1 : 1)\)
\((-1 : -3 : 1)\) \((-1 : 3 : 1)\) \((2 : -3 : 1)\) \((2 : 3 : 1)\) \((-5 : -383 : 7)\) \((-5 : 383 : 7)\)
\((12 : -383 : 7)\) \((12 : 383 : 7)\)

magma: [C![-5,-363,7],C![-5,20,7],C![-1,-2,1],C![-1,1,1],C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,-1,1],C![1,0,1],C![1,1,0],C![2,-2,1],C![2,1,1],C![12,-363,7],C![12,20,7]]; // minimal model
 
magma: [C![-5,-383,7],C![-5,383,7],C![-1,-3,1],C![-1,3,1],C![0,-1,1],C![0,1,1],C![1,-2,0],C![1,-1,1],C![1,1,1],C![1,2,0],C![2,-3,1],C![2,3,1],C![12,-383,7],C![12,383,7]]; // simplified model
 

Number of rational Weierstrass points: \(0\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 0 : 1) + (2 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0.081387\) \(\infty\)
\((-1 : -2 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 - z^3\) \(0.081387\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 0 : 1) + (2 : -2 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-xz^2\) \(0.081387\) \(\infty\)
\((-1 : -2 : 1) + (1 : 0 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(xz^2 - z^3\) \(0.081387\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 1 : 1) + (2 : -3 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \(x (x - 2z)\) \(=\) \(0,\) \(y\) \(=\) \(-2xz^2 + z^3\) \(0.081387\) \(\infty\)
\((-1 : -3 : 1) + (1 : 1 : 1) - (1 : -2 : 0) - (1 : 2 : 0)\) \((x - z) (x + z)\) \(=\) \(0,\) \(y\) \(=\) \(2xz^2 - z^3\) \(0.081387\) \(\infty\)

2-torsion field: 4.2.688.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.006279 \)
Real period: \( 24.46037 \)
Tamagawa product: \( 2 \)
Torsion order:\( 1 \)
Leading coefficient: \( 0.307177 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(3\) \(1\) \(2\) \(2\) \(( 1 + T )( 1 + 2 T + 3 T^{2} )\)
\(43\) \(2\) \(2\) \(1\) \(( 1 + T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.30.2 no
\(3\) 3.90.1 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over \(\Q\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  Elliptic curve isogeny class 129.a
  Elliptic curve isogeny class 43.a

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)an order of index \(2\) in \(\Z \times \Z\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\) \(\times\) \(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);
 

Additional information

The set of rational points on this genus 2 curve with rank 2 Jacobian was computed by Bars--González--Xarles using 2-cover descent and elliptic Chabauty and Edixhoven--Lido using geometric quadratic Chabauty.