Properties

Label 35344.a.565504.1
Conductor $35344$
Discriminant $565504$
Mordell-Weil group \(\Z \oplus \Z\)
Sato-Tate group $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\R \times \R\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathsf{RM}\)
\(\End(J) \otimes \Q\) \(\mathsf{RM}\)
\(\overline{\Q}\)-simple yes
\(\mathrm{GL}_2\)-type yes

Related objects

Downloads

Learn more

Show commands: Magma / SageMath

Minimal equation

Minimal equation

Simplified equation

$y^2 = x^5 - x^4 + x^3 + x^2 - 2x + 1$ (homogenize, simplify)
$y^2 = x^5z - x^4z^2 + x^3z^3 + x^2z^4 - 2xz^5 + z^6$ (dehomogenize, simplify)
$y^2 = x^5 - x^4 + x^3 + x^2 - 2x + 1$ (homogenize, minimize)

sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([1, -2, 1, 1, -1, 1]), R([]));
 
magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![1, -2, 1, 1, -1, 1], R![]);
 
sage: X = HyperellipticCurve(R([1, -2, 1, 1, -1, 1]))
 
magma: X,pi:= SimplifiedModel(C);
 

Invariants

Conductor: \( N \)  \(=\)  \(35344\) \(=\) \( 2^{4} \cdot 47^{2} \)
magma: Conductor(LSeries(C)); Factorization($1);
 
Discriminant: \( \Delta \)  \(=\)  \(565504\) \(=\) \( 2^{8} \cdot 47^{2} \)
magma: Discriminant(C); Factorization(Integers()!$1);
 

Igusa-Clebsch invariants

Igusa invariants

G2 invariants

\( I_2 \)  \(=\) \(58\) \(=\)  \( 2 \cdot 29 \)
\( I_4 \)  \(=\) \(64\) \(=\)  \( 2^{6} \)
\( I_6 \)  \(=\) \(562\) \(=\)  \( 2 \cdot 281 \)
\( I_{10} \)  \(=\) \(-2209\) \(=\)  \( - 47^{2} \)
\( J_2 \)  \(=\) \(116\) \(=\)  \( 2^{2} \cdot 29 \)
\( J_4 \)  \(=\) \(390\) \(=\)  \( 2 \cdot 3 \cdot 5 \cdot 13 \)
\( J_6 \)  \(=\) \(5116\) \(=\)  \( 2^{2} \cdot 1279 \)
\( J_8 \)  \(=\) \(110339\) \(=\)  \( 110339 \)
\( J_{10} \)  \(=\) \(-565504\) \(=\)  \( - 2^{8} \cdot 47^{2} \)
\( g_1 \)  \(=\) \(-82044596/2209\)
\( g_2 \)  \(=\) \(-4755855/4418\)
\( g_3 \)  \(=\) \(-1075639/8836\)

sage: C.igusa_clebsch_invariants(); [factor(a) for a in _]
 
magma: IgusaClebschInvariants(C); IgusaInvariants(C); G2Invariants(C);
 

Automorphism group

\(\mathrm{Aut}(X)\)\(\simeq\) $C_2$
magma: AutomorphismGroup(C); IdentifyGroup($1);
 
\(\mathrm{Aut}(X_{\overline{\Q}})\)\(\simeq\) $C_2$
magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1);
 

Rational points

All points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((1 : 1 : 1)\) \((2 : -5 : 1)\) \((2 : 5 : 1)\) \((4 : -29 : 1)\) \((4 : 29 : 1)\)
All points
\((1 : 0 : 0)\) \((0 : -1 : 1)\) \((0 : 1 : 1)\) \((-1 : -1 : 1)\) \((-1 : 1 : 1)\) \((1 : -1 : 1)\)
\((1 : 1 : 1)\) \((2 : -5 : 1)\) \((2 : 5 : 1)\) \((4 : -29 : 1)\) \((4 : 29 : 1)\)
All points
\((1 : 0 : 0)\) \((0 : -1/2 : 1)\) \((0 : 1/2 : 1)\) \((-1 : -1/2 : 1)\) \((-1 : 1/2 : 1)\) \((1 : -1/2 : 1)\)
\((1 : 1/2 : 1)\) \((2 : -5/2 : 1)\) \((2 : 5/2 : 1)\) \((4 : -29/2 : 1)\) \((4 : 29/2 : 1)\)

magma: [C![-1,-1,1],C![-1,1,1],C![0,-1,1],C![0,1,1],C![1,-1,1],C![1,0,0],C![1,1,1],C![2,-5,1],C![2,5,1],C![4,-29,1],C![4,29,1]]; // minimal model
 
magma: [C![-1,-1/2,1],C![-1,1/2,1],C![0,-1/2,1],C![0,1/2,1],C![1,-1/2,1],C![1,0,0],C![1,1/2,1],C![2,-5/2,1],C![2,5/2,1],C![4,-29/2,1],C![4,29/2,1]]; // simplified model
 

Number of rational Weierstrass points: \(1\)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));
 

This curve is locally solvable everywhere.

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);
 

Mordell-Weil group of the Jacobian

Group structure: \(\Z \oplus \Z\)

magma: MordellWeilGroupGenus2(Jacobian(C));
 

Generator $D_0$ Height Order
\((0 : 1 : 1) + (1 : 1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0.127053\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.096317\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 1 : 1) + (1 : 1 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(z^3\) \(0.127053\) \(\infty\)
\((0 : -1 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-z^3\) \(0.096317\) \(\infty\)
Generator $D_0$ Height Order
\((0 : 1/2 : 1) + (1 : 1/2 : 1) - 2 \cdot(1 : 0 : 0)\) \(x (x - z)\) \(=\) \(0,\) \(y\) \(=\) \(1/2z^3\) \(0.127053\) \(\infty\)
\((0 : -1/2 : 1) - (1 : 0 : 0)\) \(x\) \(=\) \(0,\) \(y\) \(=\) \(-1/2z^3\) \(0.096317\) \(\infty\)

2-torsion field: 5.1.2209.1

BSD invariants

Hasse-Weil conjecture: verified
Analytic rank: \(2\)
Mordell-Weil rank: \(2\)
2-Selmer rank:\(2\)
Regulator: \( 0.011292 \)
Real period: \( 11.51929 \)
Tamagawa product: \( 9 \)
Torsion order:\( 1 \)
Leading coefficient: \( 1.170768 \)
Analytic order of Ш: \( 1 \)   (rounded)
Order of Ш:square

Local invariants

Prime ord(\(N\)) ord(\(\Delta\)) Tamagawa L-factor Cluster picture
\(2\) \(4\) \(8\) \(9\) \(1\)
\(47\) \(2\) \(2\) \(1\) \(( 1 - T )^{2}\)

Galois representations

For primes $\ell \ge 5$ the Galois representation data has not been computed for this curve since it is not generic.

For primes $\ell \le 3$, the image of the mod-$\ell$ Galois representation is listed in the table below, whenever it is not all of $\GSp(4,\F_\ell)$.

Prime \(\ell\) mod-\(\ell\) image Is torsion prime?
\(2\) 2.72.1 no
\(3\) 3.432.4 no

Sato-Tate group

\(\mathrm{ST}\)\(\simeq\) $\mathrm{SU}(2)\times\mathrm{SU}(2)$
\(\mathrm{ST}^0\)\(\simeq\) \(\mathrm{SU}(2)\times\mathrm{SU}(2)\)

Decomposition of the Jacobian

Simple over \(\overline{\Q}\)

magma: HeuristicDecompositionFactors(C);
 

Endomorphisms of the Jacobian

Of \(\GL_2\)-type over \(\Q\)

Endomorphism ring over \(\Q\):

\(\End (J_{})\)\(\simeq\)\(\Z [\frac{1 + \sqrt{5}}{2}]\)
\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q(\sqrt{5}) \)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R \times \R\)

All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).

magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 

magma: HeuristicIsGL2(C); HeuristicEndomorphismDescription(C); HeuristicEndomorphismFieldOfDefinition(C);
 

magma: HeuristicIsGL2(C : Geometric := true); HeuristicEndomorphismDescription(C : Geometric := true); HeuristicEndomorphismLatticeDescription(C);
 

Additional information

The Jacobian of this curve is an optimal quotient of $J_0(188)$. The set of rational points on this genus 2 curve with rank 2 Jacobian was computed by Balakrishnan--Dogra--Müller--Tuitman--Vonk using quadratic Chabauty and the Mordell--Weil sieve.