# Properties

 Label 294.a.294.1 Conductor 294 Discriminant -294 Sato-Tate group $G_{3,3}$ $$\End(J_{\overline{\Q}}) \otimes \R$$ $$\R \times \R$$ $$\End(J_{\overline{\Q}}) \otimes \Q$$ $$\Q \times \Q$$ $$\overline{\Q}$$-simple no $$\mathrm{GL}_2$$-type yes

# Related objects

Show commands for: Magma / SageMath

## Minimal equation

magma: R<x> := PolynomialRing(Rationals()); C := HyperellipticCurve(R![0, 0, 1, 0, 1], R![1, 0, 0, 1]);
sage: R.<x> = PolynomialRing(QQ); C = HyperellipticCurve(R([0, 0, 1, 0, 1]), R([1, 0, 0, 1]))

$y^2 + (x^3 + 1)y = x^4 + x^2$

## Invariants

 magma: Conductor(LSeries(C)); Factorization($1); $$N$$ = $$294$$ = $$2 \cdot 3 \cdot 7^{2}$$ magma: Discriminant(C); Factorization(Integers()!$1); $$\Delta$$ = $$-294$$ = $$-1 \cdot 2 \cdot 3 \cdot 7^{2}$$

### G2 invariants

magma: G2Invariants(C);

 $$I_2$$ = $$-472$$ = $$-1 \cdot 2^{3} \cdot 59$$ $$I_4$$ = $$2020$$ = $$2^{2} \cdot 5 \cdot 101$$ $$I_6$$ = $$-147608$$ = $$-1 \cdot 2^{3} \cdot 18451$$ $$I_{10}$$ = $$-1204224$$ = $$-1 \cdot 2^{13} \cdot 3 \cdot 7^{2}$$ $$J_2$$ = $$-59$$ = $$-1 \cdot 59$$ $$J_4$$ = $$124$$ = $$2^{2} \cdot 31$$ $$J_6$$ = $$-564$$ = $$-1 \cdot 2^{2} \cdot 3 \cdot 47$$ $$J_8$$ = $$4475$$ = $$5^{2} \cdot 179$$ $$J_{10}$$ = $$-294$$ = $$-1 \cdot 2 \cdot 3 \cdot 7^{2}$$ $$g_1$$ = $$714924299/294$$ $$g_2$$ = $$12733498/147$$ $$g_3$$ = $$327214/49$$
Alternative geometric invariants: G2

## Automorphism group

 magma: AutomorphismGroup(C); IdentifyGroup($1); $$\mathrm{Aut}(X)$$ $$\simeq$$ $$V_4$$ (GAP id : [4,2]) magma: AutomorphismGroup(ChangeRing(C,AlgebraicClosure(Rationals()))); IdentifyGroup($1); $$\mathrm{Aut}(X_{\overline{\Q}})$$ $$\simeq$$ $$V_4$$ (GAP id : [4,2])

## Rational points

magma: f,h:=HyperellipticPolynomials(C); g:=4*f+h^2; HasPointsEverywhereLocally(g,2) and (#Roots(ChangeRing(g,RealField())) gt 0 or LeadingCoefficient(g) gt 0);

This curve is locally solvable everywhere.

magma: [C![0,-1,1],C![0,0,1],C![1,-1,0],C![1,0,0]];

All rational points: (0 : -1 : 1), (0 : 0 : 1), (1 : -1 : 0), (1 : 0 : 0)

magma: #Roots(HyperellipticPolynomials(SimplifiedModel(C)));

Number of rational Weierstrass points: $$0$$

## Invariants of the Jacobian:

Analytic rank: $$0$$

magma: TwoSelmerGroup(Jacobian(C)); NumberOfGenerators($1); 2-Selmer rank: $$1$$ magma: HasSquareSha(Jacobian(C)); Order of Ш*: square Tamagawa numbers: 1 (p = 2), 1 (p = 3), 1 (p = 7) magma: TorsionSubgroup(Jacobian(SimplifiedModel(C))); AbelianInvariants($1);

Torsion: $$\Z/{12}\Z$$

### Sato-Tate group

 $$\mathrm{ST}$$ $$\simeq$$ $G_{3,3}$ $$\mathrm{ST}^0$$ $$\simeq$$ $$\mathrm{SU}(2)\times\mathrm{SU}(2)$$

### Decomposition

Splits over $$\Q$$

Decomposes up to isogeny as the product of the non-isogenous elliptic curves:
Elliptic curve 14.a5
Elliptic curve 21.a6

### Endomorphisms

Of $$\GL_2$$-type over $$\Q$$

Endomorphism ring over $$\Q$$:
 $$\End (J_{})$$ $$\simeq$$ an order of index $$2$$ in $$\Z \times \Z$$ $$\End (J_{}) \otimes \Q$$ $$\simeq$$ $$\Q$$ $$\times$$ $$\Q$$ $$\End (J_{}) \otimes \R$$ $$\simeq$$ $$\R \times \R$$

All $$\overline{\Q}$$-endomorphisms of the Jacobian are defined over $$\Q$$.