Minimal equation
Minimal equation
Simplified equation
$y^2 + (x^3 + 1)y = x^4 + 2x^3 + x^2 - x$ | (homogenize, simplify) |
$y^2 + (x^3 + z^3)y = x^4z^2 + 2x^3z^3 + x^2z^4 - xz^5$ | (dehomogenize, simplify) |
$y^2 = x^6 + 4x^4 + 10x^3 + 4x^2 - 4x + 1$ | (homogenize, minimize) |
Invariants
Conductor: | \( N \) | \(=\) | \(1116\) | \(=\) | \( 2^{2} \cdot 3^{2} \cdot 31 \) |
|
Discriminant: | \( \Delta \) | \(=\) | \(-214272\) | \(=\) | \( - 2^{8} \cdot 3^{3} \cdot 31 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
\( I_2 \) | \(=\) | \(52\) | \(=\) | \( 2^{2} \cdot 13 \) |
\( I_4 \) | \(=\) | \(22201\) | \(=\) | \( 149^{2} \) |
\( I_6 \) | \(=\) | \(238285\) | \(=\) | \( 5 \cdot 47657 \) |
\( I_{10} \) | \(=\) | \(-27426816\) | \(=\) | \( - 2^{15} \cdot 3^{3} \cdot 31 \) |
\( J_2 \) | \(=\) | \(13\) | \(=\) | \( 13 \) |
\( J_4 \) | \(=\) | \(-918\) | \(=\) | \( - 2 \cdot 3^{3} \cdot 17 \) |
\( J_6 \) | \(=\) | \(36\) | \(=\) | \( 2^{2} \cdot 3^{2} \) |
\( J_8 \) | \(=\) | \(-210564\) | \(=\) | \( - 2^{2} \cdot 3^{2} \cdot 5849 \) |
\( J_{10} \) | \(=\) | \(-214272\) | \(=\) | \( - 2^{8} \cdot 3^{3} \cdot 31 \) |
\( g_1 \) | \(=\) | \(-371293/214272\) | ||
\( g_2 \) | \(=\) | \(37349/3968\) | ||
\( g_3 \) | \(=\) | \(-169/5952\) |
Automorphism group
\(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
\(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points | |||||
---|---|---|---|---|---|
\((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) |
\((1 : 1 : 1)\) | \((1 : -3 : 1)\) |
All points | |||||
---|---|---|---|---|---|
\((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) |
\((1 : 1 : 1)\) | \((1 : -3 : 1)\) |
All points | |||||
---|---|---|---|---|---|
\((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((-1 : -2 : 1)\) | \((-1 : 2 : 1)\) |
\((1 : -4 : 1)\) | \((1 : 4 : 1)\) |
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{39}\Z\)
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 1 : 1) + (1 : -3 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2xz^2 - z^3\) | \(0\) | \(39\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 1 : 1) + (1 : -3 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2xz^2 - z^3\) | \(0\) | \(39\) |
Generator | $D_0$ | Height | Order | |||||
---|---|---|---|---|---|---|---|---|
\((-1 : 2 : 1) + (1 : -4 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - 4xz^2 - z^3\) | \(0\) | \(39\) |
BSD invariants
Hasse-Weil conjecture: | unverified |
Analytic rank: | \(0\) |
Mordell-Weil rank: | \(0\) |
2-Selmer rank: | \(0\) |
Regulator: | \( 1 \) |
Real period: | \( 16.98409 \) |
Tamagawa product: | \( 39 \) |
Torsion order: | \( 39 \) |
Leading coefficient: | \( 0.435489 \) |
Analytic order of Ш: | \( 1 \) (rounded) |
Order of Ш: | square |
Local invariants
Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
---|---|---|---|---|---|---|---|
\(2\) | \(2\) | \(8\) | \(13\) | \(-1^*\) | \(( 1 - T )( 1 + T )\) | yes | |
\(3\) | \(2\) | \(3\) | \(3\) | \(1\) | \(1 + T + T^{2}\) | yes | |
\(31\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 7 T + 31 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
---|---|---|
\(2\) | 2.10.1 | no |
\(3\) | 3.80.1 | yes |
\(13\) | not computed | yes |
Sato-Tate group
\(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
\(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
\(\End (J_{})\) | \(\simeq\) | \(\Z\) |
\(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
\(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
Additional information
This example of a curve of genus 2 whose Jacobian has a rational 39-torsion point was discovered by Noam Elkies (see this page).