Minimal equation
Minimal equation
Simplified equation
| $y^2 + (x^3 + 1)y = x^4 + 2x^3 + x^2 - x$ | (homogenize, simplify) |
| $y^2 + (x^3 + z^3)y = x^4z^2 + 2x^3z^3 + x^2z^4 - xz^5$ | (dehomogenize, simplify) |
| $y^2 = x^6 + 4x^4 + 10x^3 + 4x^2 - 4x + 1$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(1116\) | \(=\) | \( 2^{2} \cdot 3^{2} \cdot 31 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(-214272\) | \(=\) | \( - 2^{8} \cdot 3^{3} \cdot 31 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(52\) | \(=\) | \( 2^{2} \cdot 13 \) |
| \( I_4 \) | \(=\) | \(22201\) | \(=\) | \( 149^{2} \) |
| \( I_6 \) | \(=\) | \(238285\) | \(=\) | \( 5 \cdot 47657 \) |
| \( I_{10} \) | \(=\) | \(-27426816\) | \(=\) | \( - 2^{15} \cdot 3^{3} \cdot 31 \) |
| \( J_2 \) | \(=\) | \(13\) | \(=\) | \( 13 \) |
| \( J_4 \) | \(=\) | \(-918\) | \(=\) | \( - 2 \cdot 3^{3} \cdot 17 \) |
| \( J_6 \) | \(=\) | \(36\) | \(=\) | \( 2^{2} \cdot 3^{2} \) |
| \( J_8 \) | \(=\) | \(-210564\) | \(=\) | \( - 2^{2} \cdot 3^{2} \cdot 5849 \) |
| \( J_{10} \) | \(=\) | \(-214272\) | \(=\) | \( - 2^{8} \cdot 3^{3} \cdot 31 \) |
| \( g_1 \) | \(=\) | \(-371293/214272\) | ||
| \( g_2 \) | \(=\) | \(37349/3968\) | ||
| \( g_3 \) | \(=\) | \(-169/5952\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
| All points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) |
| \((1 : 1 : 1)\) | \((1 : -3 : 1)\) | ||||
| All points | |||||
|---|---|---|---|---|---|
| \((1 : 0 : 0)\) | \((1 : -1 : 0)\) | \((0 : 0 : 1)\) | \((0 : -1 : 1)\) | \((-1 : -1 : 1)\) | \((-1 : 1 : 1)\) |
| \((1 : 1 : 1)\) | \((1 : -3 : 1)\) | ||||
| All points | |||||
|---|---|---|---|---|---|
| \((1 : -1 : 0)\) | \((1 : 1 : 0)\) | \((0 : -1 : 1)\) | \((0 : 1 : 1)\) | \((-1 : -2 : 1)\) | \((-1 : 2 : 1)\) |
| \((1 : -4 : 1)\) | \((1 : 4 : 1)\) | ||||
Number of rational Weierstrass points: \(0\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z/{39}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : 1 : 1) + (1 : -3 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2xz^2 - z^3\) | \(0\) | \(39\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : 1 : 1) + (1 : -3 : 1) - (1 : -1 : 0) - (1 : 0 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2xz^2 - z^3\) | \(0\) | \(39\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((-1 : 2 : 1) + (1 : -4 : 1) - (1 : -1 : 0) - (1 : 1 : 0)\) | \((x - z) (x + z)\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(x^3 - 4xz^2 - z^3\) | \(0\) | \(39\) |
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(0\) |
| Mordell-Weil rank: | \(0\) |
| 2-Selmer rank: | \(0\) |
| Regulator: | \( 1 \) |
| Real period: | \( 16.98409 \) |
| Tamagawa product: | \( 39 \) |
| Torsion order: | \( 39 \) |
| Leading coefficient: | \( 0.435489 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(2\) | \(8\) | \(13\) | \(-1^*\) | \(( 1 - T )( 1 + T )\) | yes | |
| \(3\) | \(2\) | \(3\) | \(3\) | \(1\) | \(1 + T + T^{2}\) | yes | |
| \(31\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(( 1 - T )( 1 + 7 T + 31 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.10.1 | no |
| \(3\) | 3.80.1 | yes |
| \(13\) | not computed | yes |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).
Additional information
This example of a curve of genus 2 whose Jacobian has a rational 39-torsion point was discovered by Noam Elkies (see this page).