Minimal equation
Minimal equation
Simplified equation
| $y^2 + xy = 2x^5 - 3x^4 + 4x^3 - 2x^2 + x$ | (homogenize, simplify) |
| $y^2 + xz^2y = 2x^5z - 3x^4z^2 + 4x^3z^3 - 2x^2z^4 + xz^5$ | (dehomogenize, simplify) |
| $y^2 = 8x^5 - 12x^4 + 16x^3 - 7x^2 + 4x$ | (homogenize, minimize) |
Invariants
| Conductor: | \( N \) | \(=\) | \(10056\) | \(=\) | \( 2^{3} \cdot 3 \cdot 419 \) |
|
| Discriminant: | \( \Delta \) | \(=\) | \(181008\) | \(=\) | \( 2^{4} \cdot 3^{3} \cdot 419 \) |
|
Igusa-Clebsch invariants
Igusa invariants
G2 invariants
| \( I_2 \) | \(=\) | \(368\) | \(=\) | \( 2^{4} \cdot 23 \) |
| \( I_4 \) | \(=\) | \(4132\) | \(=\) | \( 2^{2} \cdot 1033 \) |
| \( I_6 \) | \(=\) | \(532068\) | \(=\) | \( 2^{2} \cdot 3 \cdot 101 \cdot 439 \) |
| \( I_{10} \) | \(=\) | \(724032\) | \(=\) | \( 2^{6} \cdot 3^{3} \cdot 419 \) |
| \( J_2 \) | \(=\) | \(184\) | \(=\) | \( 2^{3} \cdot 23 \) |
| \( J_4 \) | \(=\) | \(722\) | \(=\) | \( 2 \cdot 19^{2} \) |
| \( J_6 \) | \(=\) | \(-9500\) | \(=\) | \( - 2^{2} \cdot 5^{3} \cdot 19 \) |
| \( J_8 \) | \(=\) | \(-567321\) | \(=\) | \( - 3 \cdot 19 \cdot 37 \cdot 269 \) |
| \( J_{10} \) | \(=\) | \(181008\) | \(=\) | \( 2^{4} \cdot 3^{3} \cdot 419 \) |
| \( g_1 \) | \(=\) | \(13181630464/11313\) | ||
| \( g_2 \) | \(=\) | \(281106368/11313\) | ||
| \( g_3 \) | \(=\) | \(-20102000/11313\) |
Automorphism group
| \(\mathrm{Aut}(X)\) | \(\simeq\) | $C_2$ |
|
| \(\mathrm{Aut}(X_{\overline{\Q}})\) | \(\simeq\) | $C_2$ |
|
Rational points
All points: \((1 : 0 : 0),\, (0 : 0 : 1),\, (1 : 1 : 1),\, (1 : -2 : 1)\)
Number of rational Weierstrass points: \(2\)
This curve is locally solvable everywhere.
Mordell-Weil group of the Jacobian
Group structure: \(\Z \oplus \Z/{2}\Z\)
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -2 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2z^3\) | \(0.055780\) | \(\infty\) |
| \((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -2 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(-2z^3\) | \(0.055780\) | \(\infty\) |
| \((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(0\) | \(0\) | \(2\) |
| Generator | $D_0$ | Height | Order | |||||
|---|---|---|---|---|---|---|---|---|
| \((1 : -3 : 1) - (1 : 0 : 0)\) | \(x - z\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2 - 4z^3\) | \(0.055780\) | \(\infty\) |
| \((0 : 0 : 1) - (1 : 0 : 0)\) | \(x\) | \(=\) | \(0,\) | \(y\) | \(=\) | \(xz^2\) | \(0\) | \(2\) |
BSD invariants
| Hasse-Weil conjecture: | unverified |
| Analytic rank: | \(1\) |
| Mordell-Weil rank: | \(1\) |
| 2-Selmer rank: | \(2\) |
| Regulator: | \( 0.055780 \) |
| Real period: | \( 8.723347 \) |
| Tamagawa product: | \( 6 \) |
| Torsion order: | \( 2 \) |
| Leading coefficient: | \( 0.729895 \) |
| Analytic order of Ш: | \( 1 \) (rounded) |
| Order of Ш: | square |
Local invariants
| Prime | ord(\(N\)) | ord(\(\Delta\)) | Tamagawa | Root number* | L-factor | Cluster picture | Tame reduction? |
|---|---|---|---|---|---|---|---|
| \(2\) | \(3\) | \(4\) | \(2\) | \(1^*\) | \(1 + T + 2 T^{2}\) | no | |
| \(3\) | \(1\) | \(3\) | \(3\) | \(-1\) | \(( 1 - T )( 1 + 2 T + 3 T^{2} )\) | yes | |
| \(419\) | \(1\) | \(1\) | \(1\) | \(1\) | \(( 1 + T )( 1 + 20 T + 419 T^{2} )\) | yes |
Galois representations
The mod-$\ell$ Galois representation has maximal image \(\GSp(4,\F_\ell)\) for all primes \( \ell \) except those listed.
| Prime \(\ell\) | mod-\(\ell\) image | Is torsion prime? |
|---|---|---|
| \(2\) | 2.30.3 | yes |
Sato-Tate group
| \(\mathrm{ST}\) | \(\simeq\) | $\mathrm{USp}(4)$ |
| \(\mathrm{ST}^0\) | \(\simeq\) | \(\mathrm{USp}(4)\) |
Decomposition of the Jacobian
Simple over \(\overline{\Q}\)
Endomorphisms of the Jacobian
Not of \(\GL_2\)-type over \(\Q\)
Endomorphism ring over \(\Q\):
| \(\End (J_{})\) | \(\simeq\) | \(\Z\) |
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q\) |
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\R\) |
All \(\overline{\Q}\)-endomorphisms of the Jacobian are defined over \(\Q\).