Show commands:
Magma
magma: G := TransitiveGroup(46, 23);
Group invariants
Abstract group: | $C_{23}^2:(C_{11}\times D_{22})$ | magma: IdentifyGroup(G);
| |
Order: | $256036=2^{2} \cdot 11^{2} \cdot 23^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $46$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $23$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,32,5,40,11,29,20,24,22,28,2,34,18,43,19,45,9,25,17,41,6,42)(3,36,8,46,4,38,21,26,12,31,10,27,7,44,14,35,13,33,23,30,15,37)(16,39)$, $(1,10,8,11,18,19,6,14,2,20,16,22,13,15,12,5,4,17,9,21,3,7)(24,33,38,28,25,31,42,43,41,45,37,30,44,39,26,29,46,35,34,36,32,40)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $11$: $C_{11}$ $22$: $D_{11}$, 22T1 x 3 $44$: $D_{22}$, 44T2 $242$: 22T7 $484$: 44T27 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 23: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computedmagma: ConjugacyClasses(G);
Character table
Character table not computed
magma: CharacterTable(G);
Regular extensions
Data not computed