Label 44T35
Order \(968\)
n \(44\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $44$
Transitive number $t$ :  $35$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,29,3,42)(2,30,4,41)(5,32,22,39)(6,31,21,40)(7,44,20,28)(8,43,19,27)(9,34,18,37)(10,33,17,38)(11,24,16,25)(12,23,15,26)(13,36)(14,35), (1,37,17,30)(2,38,18,29)(3,25,15,41)(4,26,16,42)(5,36,14,31)(6,35,13,32)(7,23,11,43)(8,24,12,44)(9,33)(10,34)(19,39,21,28)(20,40,22,27)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
484:  22T8

Resolvents shown for degrees $\leq 29$


Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 11: None

Degree 22: 22T8

Low degree siblings

There are no siblings with degree $\leq 29$
Data on whether or not a number field with this Galois group has arithmetically equivalent fields has not been computed.

Conjugacy classes

There are 68 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $968=2^{3} \cdot 11^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [968, 38]
Character table: Data not available.