Show commands: Magma
Group invariants
Abstract group: | $F_8:C_3$ |
| |
Order: | $168=2^{3} \cdot 3 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $42$ |
| |
Transitive number $t$: | $26$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $6$ |
| |
Generators: | $(1,25,39,2,26,40)(3,28,42)(4,27,41)(5,29,38)(6,30,37)(7,11,10,8,12,9)(13,34,24,14,33,23)(15,36,19,16,35,20)(17,32,21)(18,31,22)$, $(1,13,27,38,8,22,36)(2,14,28,37,7,21,35)(3,16,29,39,10,23,31)(4,15,30,40,9,24,32)(5,17,26,42,12,19,33)(6,18,25,41,11,20,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $21$: $C_7:C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $C_3$
Degree 6: None
Degree 7: $C_7:C_3$
Degree 14: 14T11
Degree 21: 21T2
Low degree siblings
8T36, 14T11, 24T283, 28T27Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{42}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{18}$ | $7$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(15,16)(17,18)(19,20)(25,26)(27,28)(31,32)(37,38)$ |
3A1 | $3^{14}$ | $28$ | $3$ | $28$ | $( 1, 3, 5)( 2, 4, 6)( 7,16,25)( 8,15,26)( 9,18,27)(10,17,28)(11,13,30)(12,14,29)(19,37,32)(20,38,31)(21,40,34)(22,39,33)(23,41,36)(24,42,35)$ |
3A-1 | $3^{14}$ | $28$ | $3$ | $28$ | $( 1, 5, 3)( 2, 6, 4)( 7,25,16)( 8,26,15)( 9,27,18)(10,28,17)(11,30,13)(12,29,14)(19,32,37)(20,31,38)(21,34,40)(22,33,39)(23,36,41)(24,35,42)$ |
6A1 | $6^{4},3^{6}$ | $28$ | $6$ | $32$ | $( 1, 6, 3, 2, 5, 4)( 7,26,16, 8,25,15)( 9,28,18,10,27,17)(11,30,13)(12,29,14)(19,31,37,20,32,38)(21,34,40)(22,33,39)(23,36,41)(24,35,42)$ |
6A-1 | $6^{4},3^{6}$ | $28$ | $6$ | $32$ | $( 1, 4, 5, 2, 3, 6)( 7,15,25, 8,16,26)( 9,17,27,10,18,28)(11,13,30)(12,14,29)(19,38,32,20,37,31)(21,40,34)(22,39,33)(23,41,36)(24,42,35)$ |
7A1 | $7^{6}$ | $24$ | $7$ | $36$ | $( 1,28, 7,36,14,38,22)( 2,27, 8,35,13,37,21)( 3,29,10,32,15,39,24)( 4,30, 9,31,16,40,23)( 5,26,11,33,18,41,20)( 6,25,12,34,17,42,19)$ |
7A-1 | $7^{6}$ | $24$ | $7$ | $36$ | $( 1,22,38,14,36, 7,28)( 2,21,37,13,35, 8,27)( 3,24,39,15,32,10,29)( 4,23,40,16,31, 9,30)( 5,20,41,18,33,11,26)( 6,19,42,17,34,12,25)$ |
Malle's constant $a(G)$: $1/12$
Character table
1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 7A1 | 7A-1 | ||
Size | 1 | 7 | 28 | 28 | 28 | 28 | 24 | 24 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 1A | 2A | 2A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | 1A | |
Type | |||||||||
168.43.1a | R | ||||||||
168.43.1b1 | C | ||||||||
168.43.1b2 | C | ||||||||
168.43.3a1 | C | ||||||||
168.43.3a2 | C | ||||||||
168.43.7a | R | ||||||||
168.43.7b1 | C | ||||||||
168.43.7b2 | C |
Regular extensions
Data not computed