Show commands:
Magma
magma: G := TransitiveGroup(38, 5);
Group invariants
Abstract group: | $C_{19}:C_6$ | magma: IdentifyGroup(G);
| |
Order: | $114=2 \cdot 3 \cdot 19$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $38$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $5$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,34,29)(2,33,30)(3,9,13)(4,10,14)(5,23,35)(6,24,36)(7,38,19)(8,37,20)(11,27,25)(12,28,26)(15,18,32)(16,17,31)$, $(1,3,27,12,10,24)(2,4,28,11,9,23)(5,13,34,8,38,17)(6,14,33,7,37,18)(15,20,29,36,32,21)(16,19,30,35,31,22)(25,26)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: $C_{19}:C_{6}$
Low degree siblings
19T4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{38}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{19}$ | $19$ | $2$ | $19$ | $( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)(10,16)(11,13)(12,14)(25,37)(26,38)(27,36)(28,35)(29,33)(30,34)(31,32)$ |
3A1 | $3^{12},1^{2}$ | $19$ | $3$ | $24$ | $( 1, 5,11)( 2, 6,12)( 3,28,26)( 4,27,25)( 7,34,15)( 8,33,16)( 9,17,30)(10,18,29)(13,24,20)(14,23,19)(21,36,37)(22,35,38)$ |
3A-1 | $3^{12},1^{2}$ | $19$ | $3$ | $24$ | $( 1,11, 5)( 2,12, 6)( 3,26,28)( 4,25,27)( 7,15,34)( 8,16,33)( 9,30,17)(10,29,18)(13,20,24)(14,19,23)(21,37,36)(22,38,35)$ |
6A1 | $6^{6},2$ | $19$ | $6$ | $31$ | $( 1,13, 5,24,11,20)( 2,14, 6,23,12,19)( 3,38,28,22,26,35)( 4,37,27,21,25,36)( 7, 9,34,17,15,30)( 8,10,33,18,16,29)(31,32)$ |
6A-1 | $6^{6},2$ | $19$ | $6$ | $31$ | $( 1,20,11,24, 5,13)( 2,19,12,23, 6,14)( 3,35,26,22,28,38)( 4,36,25,21,27,37)( 7,30,15,17,34, 9)( 8,29,16,18,33,10)(31,32)$ |
19A1 | $19^{2}$ | $6$ | $19$ | $36$ | $( 1,27,15, 4,29,18, 5,32,19, 7,34,22,10,35,23,11,38,25,14)( 2,28,16, 3,30,17, 6,31,20, 8,33,21, 9,36,24,12,37,26,13)$ |
19A2 | $19^{2}$ | $6$ | $19$ | $36$ | $( 1,15,29, 5,19,34,10,23,38,14,27, 4,18,32, 7,22,35,11,25)( 2,16,30, 6,20,33, 9,24,37,13,28, 3,17,31, 8,21,36,12,26)$ |
19A4 | $19^{2}$ | $6$ | $19$ | $36$ | $( 1,29,19,10,38,27,18, 7,35,25,15, 5,34,23,14, 4,32,22,11)( 2,30,20, 9,37,28,17, 8,36,26,16, 6,33,24,13, 3,31,21,12)$ |
Malle's constant $a(G)$: $1/19$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 19A1 | 19A2 | 19A4 | ||
Size | 1 | 19 | 19 | 19 | 19 | 19 | 6 | 6 | 6 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3A1 | 3A-1 | 19A2 | 19A4 | 19A1 | |
3 P | 1A | 2A | 1A | 1A | 2A | 2A | 19A2 | 19A4 | 19A1 | |
19 P | 1A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 1A | 1A | 1A | |
Type | ||||||||||
114.1.1a | R | |||||||||
114.1.1b | R | |||||||||
114.1.1c1 | C | |||||||||
114.1.1c2 | C | |||||||||
114.1.1d1 | C | |||||||||
114.1.1d2 | C | |||||||||
114.1.6a1 | R | |||||||||
114.1.6a2 | R | |||||||||
114.1.6a3 | R |
magma: CharacterTable(G);
Regular extensions
Data not computed