Properties

Label 38T5
Degree $38$
Order $114$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{19}:C_6$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(38, 5);
 

Group invariants

Abstract group:  $C_{19}:C_6$
magma: IdentifyGroup(G);
 
Order:  $114=2 \cdot 3 \cdot 19$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $38$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $5$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,34,29)(2,33,30)(3,9,13)(4,10,14)(5,23,35)(6,24,36)(7,38,19)(8,37,20)(11,27,25)(12,28,26)(15,18,32)(16,17,31)$, $(1,3,27,12,10,24)(2,4,28,11,9,23)(5,13,34,8,38,17)(6,14,33,7,37,18)(15,20,29,36,32,21)(16,19,30,35,31,22)(25,26)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$3$:  $C_3$
$6$:  $C_6$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 19: $C_{19}:C_{6}$

Low degree siblings

19T4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{38}$ $1$ $1$ $0$ $()$
2A $2^{19}$ $19$ $2$ $19$ $( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,17)( 8,18)( 9,15)(10,16)(11,13)(12,14)(25,37)(26,38)(27,36)(28,35)(29,33)(30,34)(31,32)$
3A1 $3^{12},1^{2}$ $19$ $3$ $24$ $( 1, 5,11)( 2, 6,12)( 3,28,26)( 4,27,25)( 7,34,15)( 8,33,16)( 9,17,30)(10,18,29)(13,24,20)(14,23,19)(21,36,37)(22,35,38)$
3A-1 $3^{12},1^{2}$ $19$ $3$ $24$ $( 1,11, 5)( 2,12, 6)( 3,26,28)( 4,25,27)( 7,15,34)( 8,16,33)( 9,30,17)(10,29,18)(13,20,24)(14,19,23)(21,37,36)(22,38,35)$
6A1 $6^{6},2$ $19$ $6$ $31$ $( 1,13, 5,24,11,20)( 2,14, 6,23,12,19)( 3,38,28,22,26,35)( 4,37,27,21,25,36)( 7, 9,34,17,15,30)( 8,10,33,18,16,29)(31,32)$
6A-1 $6^{6},2$ $19$ $6$ $31$ $( 1,20,11,24, 5,13)( 2,19,12,23, 6,14)( 3,35,26,22,28,38)( 4,36,25,21,27,37)( 7,30,15,17,34, 9)( 8,29,16,18,33,10)(31,32)$
19A1 $19^{2}$ $6$ $19$ $36$ $( 1,27,15, 4,29,18, 5,32,19, 7,34,22,10,35,23,11,38,25,14)( 2,28,16, 3,30,17, 6,31,20, 8,33,21, 9,36,24,12,37,26,13)$
19A2 $19^{2}$ $6$ $19$ $36$ $( 1,15,29, 5,19,34,10,23,38,14,27, 4,18,32, 7,22,35,11,25)( 2,16,30, 6,20,33, 9,24,37,13,28, 3,17,31, 8,21,36,12,26)$
19A4 $19^{2}$ $6$ $19$ $36$ $( 1,29,19,10,38,27,18, 7,35,25,15, 5,34,23,14, 4,32,22,11)( 2,30,20, 9,37,28,17, 8,36,26,16, 6,33,24,13, 3,31,21,12)$

Malle's constant $a(G)$:     $1/19$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 3A1 3A-1 6A1 6A-1 19A1 19A2 19A4
Size 1 19 19 19 19 19 6 6 6
2 P 1A 1A 3A-1 3A1 3A1 3A-1 19A2 19A4 19A1
3 P 1A 2A 1A 1A 2A 2A 19A2 19A4 19A1
19 P 1A 2A 3A1 3A-1 6A1 6A-1 1A 1A 1A
Type
114.1.1a R 1 1 1 1 1 1 1 1 1
114.1.1b R 1 1 1 1 1 1 1 1 1
114.1.1c1 C 1 1 ζ31 ζ3 ζ3 ζ31 1 1 1
114.1.1c2 C 1 1 ζ3 ζ31 ζ31 ζ3 1 1 1
114.1.1d1 C 1 1 ζ31 ζ3 ζ3 ζ31 1 1 1
114.1.1d2 C 1 1 ζ3 ζ31 ζ31 ζ3 1 1 1
114.1.6a1 R 6 0 0 0 0 0 ζ199+ζ196+ζ194+ζ194+ζ196+ζ199 ζ198+ζ197+ζ191+ζ19+ζ197+ζ198 ζ195+ζ193+ζ192+ζ192+ζ193+ζ195
114.1.6a2 R 6 0 0 0 0 0 ζ198+ζ197+ζ191+ζ19+ζ197+ζ198 ζ195+ζ193+ζ192+ζ192+ζ193+ζ195 ζ199+ζ196+ζ194+ζ194+ζ196+ζ199
114.1.6a3 R 6 0 0 0 0 0 ζ195+ζ193+ζ192+ζ192+ζ193+ζ195 ζ199+ζ196+ζ194+ζ194+ζ196+ζ199 ζ198+ζ197+ζ191+ζ19+ζ197+ζ198

magma: CharacterTable(G);
 

Regular extensions

Data not computed