Properties

Label 38T42
Order \(58482\)
n \(38\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $38$
Transitive number $t$ :  $42$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,30,14,29,16,23,9,25,5,37,19,33,8,28,18,36,2,27)(3,24,7,31,12,35,4,21,13,32,10,22,11,38,17,20,15,26)(6,34), (1,27,11,23,4,22,7,36,3,30,2,38,16,21,10,31,18,24)(5,33,12,34,9,20,13,26,14,37,19,35,6,25,17,32,15,29)(8,28)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $S_3$, $C_6$
9:  $C_9$
18:  $S_3\times C_3$, $D_{9}$, $C_{18}$
54:  $C_9\times S_3$, 18T19
162:  18T74

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 19: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 77 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $58482=2 \cdot 3^{4} \cdot 19^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.