Show commands: Magma
Group invariants
Abstract group: | $D_{19}^2:D_9$ |
| |
Order: | $25992=2^{3} \cdot 3^{2} \cdot 19^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $38$ |
| |
Transitive number $t$: | $34$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,4,3,16,18,11,7,2,10)(5,9,14,6,15,12,13,19,17)(20,22,28,27,24,34,26,21,25,37,35,29,30,33,23,31,36,32)$, $(1,34,17,33,14,32,11,31,8,30,5,29,2,28,18,27,15,26,12,25,9,24,6,23,3,22,19,21,16,20,13,38,10,37,7,36,4,35)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $8$: $D_{4}$ $12$: $D_{6}$ $18$: $D_{9}$ $24$: $(C_6\times C_2):C_2$ $36$: $D_{18}$ $72$: 36T24 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{38}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{9},1^{20}$ | $38$ | $2$ | $9$ | $(20,26)(21,25)(22,24)(27,38)(28,37)(29,36)(30,35)(31,34)(32,33)$ |
2B | $2^{19}$ | $342$ | $2$ | $19$ | $( 1,31)( 2,22)( 3,32)( 4,23)( 5,33)( 6,24)( 7,34)( 8,25)( 9,35)(10,26)(11,36)(12,27)(13,37)(14,28)(15,38)(16,29)(17,20)(18,30)(19,21)$ |
2C | $2^{18},1^{2}$ | $361$ | $2$ | $18$ | $( 1,19)( 2,18)( 3,17)( 4,16)( 5,15)( 6,14)( 7,13)( 8,12)( 9,11)(20,25)(21,24)(22,23)(26,38)(27,37)(28,36)(29,35)(30,34)(31,33)$ |
3A | $3^{12},1^{2}$ | $722$ | $3$ | $24$ | $( 1,13,12)( 2, 5,19)( 3,16, 7)( 4, 8,14)( 6,11, 9)(10,17,18)(20,21,28)(22,35,31)(24,30,34)(25,37,26)(27,32,29)(33,36,38)$ |
4A | $4^{9},2$ | $6498$ | $4$ | $28$ | $( 1,22,19,23)( 2,21,18,24)( 3,20,17,25)( 4,38,16,26)( 5,37,15,27)( 6,36,14,28)( 7,35,13,29)( 8,34,12,30)( 9,33,11,31)(10,32)$ |
6A | $6^{6},1^{2}$ | $722$ | $6$ | $30$ | $( 1,18, 2, 7, 9, 6)( 3,15,16, 5,12,11)( 8,17,13,19,10,14)(20,24,34,21,36,26)(22,29,37,38,31,23)(25,27,32,35,33,28)$ |
6B1 | $6^{3},3^{6},1^{2}$ | $722$ | $6$ | $27$ | $( 1,12,13)( 2,19, 5)( 3, 7,16)( 4,14, 8)( 6, 9,11)(10,18,17)(20,37,21,26,28,25)(22,34,35,24,31,30)(27,36,32,38,29,33)$ |
6B-1 | $6^{3},3^{6},1^{2}$ | $722$ | $6$ | $27$ | $( 1,13,12)( 2, 5,19)( 3,16, 7)( 4, 8,14)( 6,11, 9)(10,17,18)(20,25,28,26,21,37)(22,30,31,24,35,34)(27,33,29,38,32,36)$ |
9A1 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1, 2, 7,13, 5, 3,12,19,16)( 4,17, 6, 8,18,11,14,10, 9)(20,30,32,21,34,29,28,24,27)(22,38,26,35,33,25,31,36,37)$ |
9A2 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1, 7, 5,12,16, 2,13, 3,19)( 4, 6,18,14, 9,17, 8,11,10)(20,32,34,28,27,30,21,29,24)(22,26,33,31,37,38,35,25,36)$ |
9A4 | $9^{4},1^{2}$ | $722$ | $9$ | $32$ | $( 1, 5,16,13,19, 7,12, 2, 3)( 4,18, 9, 8,10, 6,14,17,11)(20,34,27,21,24,32,28,30,29)(22,33,37,35,36,26,31,38,25)$ |
18A1 | $18^{2},1^{2}$ | $722$ | $18$ | $34$ | $( 1,19, 5,18,10,12, 2,14,11, 7, 8, 3, 9,17,15, 6,13,16)(20,32,22,24,35,29,34,33,37,21,28,38,36,25,31,26,27,23)$ |
18A5 | $18^{2},1^{2}$ | $722$ | $18$ | $34$ | $( 1,12, 8, 6, 5,14, 9,16,10, 7,15,19, 2, 3,13,18,11,17)(20,29,28,26,22,33,36,23,35,21,31,32,34,38,27,24,37,25)$ |
18A7 | $18^{2},1^{2}$ | $722$ | $18$ | $34$ | $( 1,14,15,18, 8,16, 2,17, 5, 7,13,12, 9,19,11, 6,10, 3)(20,33,31,24,28,23,34,25,22,21,27,29,36,32,37,26,35,38)$ |
18B1 | $18,9^{2},1^{2}$ | $722$ | $18$ | $33$ | $( 1, 3, 2,12, 7,19,13,16, 5)( 4,11,17,14, 6,10, 8, 9,18)(20,36,30,37,32,22,21,38,34,26,29,35,28,33,24,25,27,31)$ |
18B-1 | $18,9^{2},1^{2}$ | $722$ | $18$ | $33$ | $( 1, 5,16,13,19, 7,12, 2, 3)( 4,18, 9, 8,10, 6,14,17,11)(20,31,27,25,24,33,28,35,29,26,34,38,21,22,32,37,30,36)$ |
18B5 | $18,9^{2},1^{2}$ | $722$ | $18$ | $33$ | $( 1,19, 3,13, 2,16,12, 5, 7)( 4,10,11, 8,17, 9,14,18, 6)(20,22,29,25,30,38,28,31,32,26,24,36,21,35,27,37,34,33)$ |
18B-5 | $18,9^{2},1^{2}$ | $722$ | $18$ | $33$ | $( 1, 7, 5,12,16, 2,13, 3,19)( 4, 6,18,14, 9,17, 8,11,10)(20,33,34,37,27,35,21,36,24,26,32,31,28,38,30,25,29,22)$ |
18B7 | $18,9^{2},1^{2}$ | $722$ | $18$ | $33$ | $( 1,16,19,12, 3, 5,13, 7, 2)( 4, 9,10,14,11,18, 8, 6,17)(20,38,24,37,29,31,21,33,30,26,27,22,28,36,34,25,32,35)$ |
18B-7 | $18,9^{2},1^{2}$ | $722$ | $18$ | $33$ | $( 1, 2, 7,13, 5, 3,12,19,16)( 4,17, 6, 8,18,11,14,10, 9)(20,35,32,25,34,36,28,22,27,26,30,33,21,31,29,37,24,38)$ |
19A | $19,1^{19}$ | $36$ | $19$ | $18$ | $(20,25,30,35,21,26,31,36,22,27,32,37,23,28,33,38,24,29,34)$ |
19B1 | $19^{2}$ | $36$ | $19$ | $36$ | $( 1,14, 8, 2,15, 9, 3,16,10, 4,17,11, 5,18,12, 6,19,13, 7)(20,36,33,30,27,24,21,37,34,31,28,25,22,38,35,32,29,26,23)$ |
19B2 | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 8,15, 3,10,17, 5,12,19, 7,14, 2, 9,16, 4,11,18, 6,13)(20,33,27,21,34,28,22,35,29,23,36,30,24,37,31,25,38,32,26)$ |
19B3 | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19)(20,30,21,31,22,32,23,33,24,34,25,35,26,36,27,37,28,38,29)$ |
19B4 | $19^{2}$ | $36$ | $19$ | $36$ | $( 1,15,10, 5,19,14, 9, 4,18,13, 8, 3,17,12, 7, 2,16,11, 6)(20,27,34,22,29,36,24,31,38,26,33,21,28,35,23,30,37,25,32)$ |
19B5 | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 9,17, 6,14, 3,11,19, 8,16, 5,13, 2,10,18, 7,15, 4,12)(20,24,28,32,36,21,25,29,33,37,22,26,30,34,38,23,27,31,35)$ |
19B6 | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 3, 5, 7, 9,11,13,15,17,19, 2, 4, 6, 8,10,12,14,16,18)(20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38)$ |
19B7 | $19^{2}$ | $36$ | $19$ | $36$ | $( 1,16,12, 8, 4,19,15,11, 7, 3,18,14,10, 6, 2,17,13, 9, 5)(20,37,35,33,31,29,27,25,23,21,38,36,34,32,30,28,26,24,22)$ |
19B8 | $19^{2}$ | $36$ | $19$ | $36$ | $( 1,10,19, 9,18, 8,17, 7,16, 6,15, 5,14, 4,13, 3,12, 2,11)(20,34,29,24,38,33,28,23,37,32,27,22,36,31,26,21,35,30,25)$ |
19B9 | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 4, 7,10,13,16,19, 3, 6, 9,12,15,18, 2, 5, 8,11,14,17)(20,31,23,34,26,37,29,21,32,24,35,27,38,30,22,33,25,36,28)$ |
38A | $19,2^{9},1$ | $684$ | $38$ | $27$ | $( 1,13)( 2,12)( 3,11)( 4,10)( 5, 9)( 6, 8)(14,19)(15,18)(16,17)(20,32,25,37,30,23,35,28,21,33,26,38,31,24,36,29,22,34,27)$ |
38B1 | $38$ | $684$ | $38$ | $37$ | $( 1,20,14,36, 8,33, 2,30,15,27, 9,24, 3,21,16,37,10,34, 4,31,17,28,11,25, 5,22,18,38,12,35, 6,32,19,29,13,26, 7,23)$ |
38B3 | $38$ | $684$ | $38$ | $37$ | $( 1,36, 2,27, 3,37, 4,28, 5,38, 6,29, 7,20, 8,30, 9,21,10,31,11,22,12,32,13,23,14,33,15,24,16,34,17,25,18,35,19,26)$ |
38B5 | $38$ | $684$ | $38$ | $37$ | $( 1,33, 9,37,17,22, 6,26,14,30, 3,34,11,38,19,23, 8,27,16,31, 5,35,13,20, 2,24,10,28,18,32, 7,36,15,21, 4,25,12,29)$ |
38B7 | $38$ | $684$ | $38$ | $37$ | $( 1,30,16,28,12,26, 8,24, 4,22,19,20,15,37,11,35, 7,33, 3,31,18,29,14,27,10,25, 6,23, 2,21,17,38,13,36, 9,34, 5,32)$ |
38B9 | $38$ | $684$ | $38$ | $37$ | $( 1,27, 4,38, 7,30,10,22,13,33,16,25,19,36, 3,28, 6,20, 9,31,12,23,15,34,18,26, 2,37, 5,29, 8,21,11,32,14,24,17,35)$ |
38B11 | $38$ | $684$ | $38$ | $37$ | $( 1,24,11,29, 2,34,12,20, 3,25,13,30, 4,35,14,21, 5,26,15,31, 6,36,16,22, 7,27,17,32, 8,37,18,23, 9,28,19,33,10,38)$ |
38B13 | $38$ | $684$ | $38$ | $37$ | $( 1,21,18,20,16,38,14,37,12,36,10,35, 8,34, 6,33, 4,32, 2,31,19,30,17,29,15,28,13,27,11,26, 9,25, 7,24, 5,23, 3,22)$ |
38B15 | $38$ | $684$ | $38$ | $37$ | $( 1,37, 6,30,11,23,16,35, 2,28, 7,21,12,33,17,26, 3,38, 8,31,13,24,18,36, 4,29, 9,22,14,34,19,27, 5,20,10,32,15,25)$ |
38B17 | $38$ | $684$ | $38$ | $37$ | $( 1,34,13,21, 6,27,18,33,11,20, 4,26,16,32, 9,38, 2,25,14,31, 7,37,19,24,12,30, 5,36,17,23,10,29, 3,35,15,22, 8,28)$ |
Malle's constant $a(G)$: $1/9$
Character table
41 x 41 character table
Regular extensions
Data not computed