Show commands: Magma
Group invariants
Abstract group: | $D_{19}:F_{19}$ |
| |
Order: | $12996=2^{2} \cdot 3^{2} \cdot 19^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $38$ |
| |
Transitive number $t$: | $30$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,6)(2,5)(3,4)(7,19)(8,18)(9,17)(10,16)(11,15)(12,14)(20,30)(21,29)(22,28)(23,27)(24,26)(31,38)(32,37)(33,36)(34,35)$, $(1,29,9,26,4,35,19,27,12,32,14,36,8,24,7,22,10,28)(2,31,6,20,13,34,11,30,17,23,18,25,15,38,5,37,16,21)(3,33)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $9$: $C_9$ $12$: $C_6\times C_2$ $18$: $C_{18}$ x 3 $36$: 36T2 $342$: $F_{19}$ x 2 $684$: 38T9 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 19: None
Low degree siblings
38T30 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{38}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{19}$ | $19$ | $2$ | $19$ | $( 1,38)( 2,28)( 3,37)( 4,27)( 5,36)( 6,26)( 7,35)( 8,25)( 9,34)(10,24)(11,33)(12,23)(13,32)(14,22)(15,31)(16,21)(17,30)(18,20)(19,29)$ |
2B | $2^{19}$ | $19$ | $2$ | $19$ | $( 1,25)( 2,35)( 3,26)( 4,36)( 5,27)( 6,37)( 7,28)( 8,38)( 9,29)(10,20)(11,30)(12,21)(13,31)(14,22)(15,32)(16,23)(17,33)(18,24)(19,34)$ |
2C | $2^{18},1^{2}$ | $361$ | $2$ | $18$ | $( 1, 8)( 2, 7)( 3, 6)( 4, 5)( 9,19)(10,18)(11,17)(12,16)(13,15)(20,35)(21,34)(22,33)(23,32)(24,31)(25,30)(26,29)(27,28)(36,38)$ |
3A1 | $3^{12},1^{2}$ | $361$ | $3$ | $24$ | $( 1,18, 4)( 2, 6,15)( 3,13, 7)( 5, 8,10)( 9,17,16)(11,12,19)(20,32,21)(22,27,24)(23,34,35)(25,29,38)(26,36,30)(28,31,33)$ |
3A-1 | $3^{12},1^{2}$ | $361$ | $3$ | $24$ | $( 1, 4,18)( 2,15, 6)( 3, 7,13)( 5,10, 8)( 9,16,17)(11,19,12)(20,21,32)(22,24,27)(23,35,34)(25,38,29)(26,30,36)(28,33,31)$ |
6A1 | $6^{6},1^{2}$ | $361$ | $6$ | $30$ | $( 1, 5,18, 8, 4,10)( 2,13, 6, 7,15, 3)( 9,12,17,19,16,11)(20,34,32,35,21,23)(22,31,27,33,24,28)(25,36,29,30,38,26)$ |
6A-1 | $6^{6},1^{2}$ | $361$ | $6$ | $30$ | $( 1,10, 4, 8,18, 5)( 2, 3,15, 7, 6,13)( 9,11,16,19,17,12)(20,23,21,35,32,34)(22,28,24,33,27,31)(25,26,38,30,29,36)$ |
6B1 | $6^{6},2$ | $361$ | $6$ | $31$ | $( 1,36,11,38, 5,33)( 2,21,18,28,16,20)( 3,25, 6,37, 8,26)( 4,29,13,27,19,32)( 7,22,15,35,14,31)( 9,30,10,34,17,24)(12,23)$ |
6B-1 | $6^{6},2$ | $361$ | $6$ | $31$ | $( 1,33, 5,38,11,36)( 2,20,16,28,18,21)( 3,26, 8,37, 6,25)( 4,32,19,27,13,29)( 7,31,14,35,15,22)( 9,24,17,34,10,30)(12,23)$ |
6C1 | $6^{6},2$ | $361$ | $6$ | $31$ | $( 1,27,11,25, 5,30)( 2,23,18,35,16,24)( 3,38, 6,26, 8,37)( 4,34,13,36,19,31)( 7,22,15,28,14,32)( 9,33,10,29,17,20)(12,21)$ |
6C-1 | $6^{6},2$ | $361$ | $6$ | $31$ | $( 1,30, 5,25,11,27)( 2,24,16,35,18,23)( 3,37, 8,26, 6,38)( 4,31,19,36,13,34)( 7,32,14,28,15,22)( 9,20,17,29,10,33)(12,21)$ |
9A1 | $9^{4},1^{2}$ | $361$ | $9$ | $32$ | $( 1,19,15,18,11, 2, 4,12, 6)( 3, 8, 9,13,10,17, 7, 5,16)(20,26,31,32,36,33,21,30,28)(22,34,25,27,35,29,24,23,38)$ |
9A-1 | $9^{4},1^{2}$ | $361$ | $9$ | $32$ | $( 1, 6,12, 4, 2,11,18,15,19)( 3,16, 5, 7,17,10,13, 9, 8)(20,28,30,21,33,36,32,31,26)(22,38,23,24,29,35,27,25,34)$ |
9A2 | $9^{4},1^{2}$ | $361$ | $9$ | $32$ | $( 1,15,11, 4, 6,19,18, 2,12)( 3, 9,10, 7,16, 8,13,17, 5)(20,31,36,21,28,26,32,33,30)(22,25,35,24,38,34,27,29,23)$ |
9A-2 | $9^{4},1^{2}$ | $361$ | $9$ | $32$ | $( 1,12, 2,18,19, 6, 4,11,15)( 3, 5,17,13, 8,16, 7,10, 9)(20,30,33,32,26,28,21,36,31)(22,23,29,27,34,38,24,35,25)$ |
9A4 | $9^{4},1^{2}$ | $361$ | $9$ | $32$ | $( 1,11, 6,18,12,15, 4,19, 2)( 3,10,16,13, 5, 9, 7, 8,17)(20,36,28,32,30,31,21,26,33)(22,35,38,27,23,25,24,34,29)$ |
9A-4 | $9^{4},1^{2}$ | $361$ | $9$ | $32$ | $( 1, 2,19, 4,15,12,18, 6,11)( 3,17, 8, 7, 9, 5,13,16,10)(20,33,26,21,31,30,32,28,36)(22,29,34,24,25,23,27,38,35)$ |
18A1 | $18^{2},1^{2}$ | $361$ | $18$ | $34$ | $( 1, 7,19, 5,15,16,18, 3,11, 8, 2, 9, 4,13,12,10, 6,17)(20,22,26,34,31,25,32,27,36,35,33,29,21,24,30,23,28,38)$ |
18A-1 | $18^{2},1^{2}$ | $361$ | $18$ | $34$ | $( 1,17, 6,10,12,13, 4, 9, 2, 8,11, 3,18,16,15, 5,19, 7)(20,38,28,23,30,24,21,29,33,35,36,27,32,25,31,34,26,22)$ |
18A5 | $18^{2},1^{2}$ | $361$ | $18$ | $34$ | $( 1,16, 2,10,19, 3, 4,17,15, 8,12, 7,18, 9, 6, 5,11,13)(20,25,33,23,26,27,21,38,31,35,30,22,32,29,28,34,36,24)$ |
18A-5 | $18^{2},1^{2}$ | $361$ | $18$ | $34$ | $( 1,13,11, 5, 6, 9,18, 7,12, 8,15,17, 4, 3,19,10, 2,16)(20,24,36,34,28,29,32,22,30,35,31,38,21,27,26,23,33,25)$ |
18A7 | $18^{2},1^{2}$ | $361$ | $18$ | $34$ | $( 1, 3,12, 5, 2,17,18,13,19, 8, 6,16, 4, 7,11,10,15, 9)(20,27,30,34,33,38,32,24,26,35,28,25,21,22,36,23,31,29)$ |
18A-7 | $18^{2},1^{2}$ | $361$ | $18$ | $34$ | $( 1, 9,15,10,11, 7, 4,16, 6, 8,19,13,18,17, 2, 5,12, 3)(20,29,31,23,36,22,21,25,28,35,26,24,32,38,33,34,30,27)$ |
18B1 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,35, 8,36,14,26,11,31, 3,38, 7,25, 5,22, 6,33,15,37)( 2,27,17,21,19,24,18,32, 9,28, 4,30,16,29,10,20,13,34)(12,23)$ |
18B-1 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,37,15,33, 6,22, 5,25, 7,38, 3,31,11,26,14,36, 8,35)( 2,34,13,20,10,29,16,30, 4,28, 9,32,18,24,19,21,17,27)(12,23)$ |
18B5 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,26, 7,33, 8,31, 5,37,14,38, 6,35,11,25,15,36, 3,22)( 2,24, 4,20,17,32,16,34,19,28,10,27,18,30,13,21, 9,29)(12,23)$ |
18B-5 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,22, 3,36,15,25,11,35, 6,38,14,37, 5,31, 8,33, 7,26)( 2,29, 9,21,13,30,18,27,10,28,19,34,16,32,17,20, 4,24)(12,23)$ |
18B7 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,31, 6,36, 7,37,11,22, 8,38,15,26, 5,35, 3,33,14,25)( 2,32,10,21, 4,34,18,29,17,28,13,24,16,27, 9,20,19,30)(12,23)$ |
18B-7 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,25,14,33, 3,35, 5,26,15,38, 8,22,11,37, 7,36, 6,31)( 2,30,19,20, 9,27,16,24,13,28,17,29,18,34, 4,21,10,32)(12,23)$ |
18C1 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,28, 8,27,14,37,11,32, 3,25, 7,38, 5,22, 6,30,15,26)( 2,36,17,23,19,20,18,31, 9,35, 4,33,16,34,10,24,13,29)(12,21)$ |
18C-1 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,26,15,30, 6,22, 5,38, 7,25, 3,32,11,37,14,27, 8,28)( 2,29,13,24,10,34,16,33, 4,35, 9,31,18,20,19,23,17,36)(12,21)$ |
18C5 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,37, 7,30, 8,32, 5,26,14,25, 6,28,11,38,15,27, 3,22)( 2,20, 4,24,17,31,16,29,19,35,10,36,18,33,13,23, 9,34)(12,21)$ |
18C-5 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,22, 3,27,15,38,11,28, 6,25,14,26, 5,32, 8,30, 7,37)( 2,34, 9,23,13,33,18,36,10,35,19,29,16,31,17,24, 4,20)(12,21)$ |
18C7 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,32, 6,27, 7,26,11,22, 8,25,15,37, 5,28, 3,30,14,38)( 2,31,10,23, 4,29,18,34,17,35,13,20,16,36, 9,24,19,33)(12,21)$ |
18C-7 | $18^{2},2$ | $361$ | $18$ | $35$ | $( 1,38,14,30, 3,28, 5,37,15,25, 8,22,11,26, 7,27, 6,32)( 2,33,19,24, 9,36,16,20,13,35,17,34,18,29, 4,23,10,31)(12,21)$ |
19A | $19^{2}$ | $18$ | $19$ | $36$ | $( 1, 5, 9,13,17, 2, 6,10,14,18, 3, 7,11,15,19, 4, 8,12,16)(20,37,35,33,31,29,27,25,23,21,38,36,34,32,30,28,26,24,22)$ |
19B | $19^{2}$ | $18$ | $19$ | $36$ | $( 1, 7,13,19, 6,12,18, 5,11,17, 4,10,16, 3, 9,15, 2, 8,14)(20,23,26,29,32,35,38,22,25,28,31,34,37,21,24,27,30,33,36)$ |
19C | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 8,15, 3,10,17, 5,12,19, 7,14, 2, 9,16, 4,11,18, 6,13)(20,35,31,27,23,38,34,30,26,22,37,33,29,25,21,36,32,28,24)$ |
19D | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 6,11,16, 2, 7,12,17, 3, 8,13,18, 4, 9,14,19, 5,10,15)(20,36,33,30,27,24,21,37,34,31,28,25,22,38,35,32,29,26,23)$ |
19E | $19^{2}$ | $36$ | $19$ | $36$ | $( 1,17,14,11, 8, 5, 2,18,15,12, 9, 6, 3,19,16,13,10, 7, 4)(20,30,21,31,22,32,23,33,24,34,25,35,26,36,27,37,28,38,29)$ |
19F | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 4, 7,10,13,16,19, 3, 6, 9,12,15,18, 2, 5, 8,11,14,17)(20,37,35,33,31,29,27,25,23,21,38,36,34,32,30,28,26,24,22)$ |
19G | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 7,13,19, 6,12,18, 5,11,17, 4,10,16, 3, 9,15, 2, 8,14)(20,25,30,35,21,26,31,36,22,27,32,37,23,28,33,38,24,29,34)$ |
19H | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,16,17,18,19)(20,38,37,36,35,34,33,32,31,30,29,28,27,26,25,24,23,22,21)$ |
19I | $19^{2}$ | $36$ | $19$ | $36$ | $( 1,13, 6,18,11, 4,16, 9, 2,14, 7,19,12, 5,17,10, 3,15, 8)(20,32,25,37,30,23,35,28,21,33,26,38,31,24,36,29,22,34,27)$ |
19J | $19^{2}$ | $36$ | $19$ | $36$ | $( 1, 5, 9,13,17, 2, 6,10,14,18, 3, 7,11,15,19, 4, 8,12,16)(20,26,32,38,25,31,37,24,30,36,23,29,35,22,28,34,21,27,33)$ |
19K | $19,1^{19}$ | $36$ | $19$ | $18$ | $( 1,16,12, 8, 4,19,15,11, 7, 3,18,14,10, 6, 2,17,13, 9, 5)$ |
38A | $38$ | $342$ | $38$ | $37$ | $( 1,37, 5,35, 9,33,13,31,17,29, 2,27, 6,25,10,23,14,21,18,38, 3,36, 7,34,11,32,15,30,19,28, 4,26, 8,24,12,22,16,20)$ |
38B | $38$ | $342$ | $38$ | $37$ | $( 1,23, 7,26,13,29,19,32, 6,35,12,38,18,22, 5,25,11,28,17,31, 4,34,10,37,16,21, 3,24, 9,27,15,30, 2,33, 8,36,14,20)$ |
Malle's constant $a(G)$: $1/18$
Character table
49 x 49 character table
Regular extensions
Data not computed