Label 38T16
Order \(4332\)
n \(38\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $38$
Transitive number $t$ :  $16$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,9,16,15,7,19)(2,17,4,14,18,12)(3,6,11,13,10,5)(20,31,30,37,26,27)(21,24,22,36,33,35)(23,29,25,34,28,32), (1,27,12,33,4,20,15,26,7,32,18,38,10,25,2,31,13,37,5,24,16,30,8,36,19,23,11,29,3,35,14,22,6,28,17,34,9,21)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
6:  $S_3$
12:  $D_{6}$

Resolvents shown for degrees $\leq 47$


Degree 2: $C_2$

Degree 19: None

Low degree siblings

There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

There are 63 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $4332=2^{2} \cdot 3 \cdot 19^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.