Show commands:
Magma
magma: G := TransitiveGroup(35, 9);
Group invariants
Abstract group: | $C_{35}:C_6$ | magma: IdentifyGroup(G);
| |
Order: | $210=2 \cdot 3 \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $35$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $9$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,35,14,3,32,11,5,34,13,2,31,15,4,33,12)(6,20,24,8,17,21,10,19,23,7,16,25,9,18,22)(26,30,29,28,27)$, $(1,12,21,32,6,17,26,2,11,22,31,7,16,27)(3,15,23,35,8,20,28,5,13,25,33,10,18,30)(4,14,24,34,9,19,29)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $10$: $D_{5}$ $21$: $C_7:C_3$ $30$: $D_5\times C_3$ $42$: $(C_7:C_3) \times C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $D_{5}$
Degree 7: $C_7:C_3$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14},1^{7}$ | $5$ | $2$ | $14$ | $( 2, 5)( 3, 4)( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)$ |
3A1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 6,11,21)( 7,12,22)( 8,13,23)( 9,14,24)(10,15,25)(16,31,26)(17,32,27)(18,33,28)(19,34,29)(20,35,30)$ |
3A-1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 6,21,11)( 7,22,12)( 8,23,13)( 9,24,14)(10,25,15)(16,26,31)(17,27,32)(18,28,33)(19,29,34)(20,30,35)$ |
5A1 | $5^{7}$ | $2$ | $5$ | $28$ | $( 1, 5, 4, 3, 2)( 6,10, 9, 8, 7)(11,15,14,13,12)(16,20,19,18,17)(21,25,24,23,22)(26,30,29,28,27)(31,35,34,33,32)$ |
5A2 | $5^{7}$ | $2$ | $5$ | $28$ | $( 1, 3, 5, 2, 4)( 6, 8,10, 7, 9)(11,13,15,12,14)(16,18,20,17,19)(21,23,25,22,24)(26,28,30,27,29)(31,33,35,32,34)$ |
6A1 | $6^{4},3^{2},2^{2},1$ | $35$ | $6$ | $26$ | $( 2, 5)( 3, 4)( 6,11,21)( 7,15,22,10,12,25)( 8,14,23, 9,13,24)(16,31,26)(17,35,27,20,32,30)(18,34,28,19,33,29)$ |
6A-1 | $6^{4},3^{2},2^{2},1$ | $35$ | $6$ | $26$ | $( 2, 5)( 3, 4)( 6,21,11)( 7,25,12,10,22,15)( 8,24,13, 9,23,14)(16,26,31)(17,30,32,20,27,35)(18,29,33,19,28,34)$ |
7A1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,21, 6,26,11,31,16)( 2,22, 7,27,12,32,17)( 3,23, 8,28,13,33,18)( 4,24, 9,29,14,34,19)( 5,25,10,30,15,35,20)$ |
7A-1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,26,16, 6,31,21,11)( 2,27,17, 7,32,22,12)( 3,28,18, 8,33,23,13)( 4,29,19, 9,34,24,14)( 5,30,20,10,35,25,15)$ |
14A1 | $14^{2},7$ | $15$ | $14$ | $32$ | $( 1,26,16, 6,31,21,11)( 2,30,17,10,32,25,12, 5,27,20, 7,35,22,15)( 3,29,18, 9,33,24,13, 4,28,19, 8,34,23,14)$ |
14A-1 | $14^{2},7$ | $15$ | $14$ | $32$ | $( 1,21, 6,26,11,31,16)( 2,25, 7,30,12,35,17, 5,22,10,27,15,32,20)( 3,24, 8,29,13,34,18, 4,23, 9,28,14,33,19)$ |
15A1 | $15^{2},5$ | $14$ | $15$ | $32$ | $( 1,18,15, 2,19,11, 3,20,12, 4,16,13, 5,17,14)( 6,28,35, 7,29,31, 8,30,32, 9,26,33,10,27,34)(21,23,25,22,24)$ |
15A-1 | $15^{2},5$ | $14$ | $15$ | $32$ | $( 1,33,15, 2,34,11, 3,35,12, 4,31,13, 5,32,14)( 6,18,25, 7,19,21, 8,20,22, 9,16,23,10,17,24)(26,28,30,27,29)$ |
15A2 | $15^{2},5$ | $14$ | $15$ | $32$ | $( 1,30,24, 3,27,21, 5,29,23, 2,26,25, 4,28,22)( 6,15,34, 8,12,31,10,14,33, 7,11,35, 9,13,32)(16,20,19,18,17)$ |
15A-2 | $15^{2},5$ | $14$ | $15$ | $32$ | $( 1,35,24, 3,32,21, 5,34,23, 2,31,25, 4,33,22)( 6,10, 9, 8, 7)(11,20,29,13,17,26,15,19,28,12,16,30,14,18,27)$ |
35A1 | $35$ | $6$ | $35$ | $34$ | $( 1,25, 9,28,12,31,20, 4,23, 7,26,15,34,18, 2,21,10,29,13,32,16, 5,24, 8,27,11,35,19, 3,22, 6,30,14,33,17)$ |
35A-1 | $35$ | $6$ | $35$ | $34$ | $( 1,20,34,13,27, 6,25, 4,18,32,11,30, 9,23, 2,16,35,14,28, 7,21, 5,19,33,12,26,10,24, 3,17,31,15,29, 8,22)$ |
35A2 | $35$ | $6$ | $35$ | $34$ | $( 1,13,25,32, 9,16,28, 5,12,24,31, 8,20,27, 4,11,23,35, 7,19,26, 3,15,22,34, 6,18,30, 2,14,21,33,10,17,29)$ |
35A-2 | $35$ | $6$ | $35$ | $34$ | $( 1,28,20, 7,34,21,13, 5,27,19, 6,33,25,12, 4,26,18,10,32,24,11, 3,30,17, 9,31,23,15, 2,29,16, 8,35,22,14)$ |
Malle's constant $a(G)$: $1/14$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A1 | 3A-1 | 5A1 | 5A2 | 6A1 | 6A-1 | 7A1 | 7A-1 | 14A1 | 14A-1 | 15A1 | 15A-1 | 15A2 | 15A-2 | 35A1 | 35A-1 | 35A2 | 35A-2 | ||
Size | 1 | 5 | 7 | 7 | 2 | 2 | 35 | 35 | 3 | 3 | 15 | 15 | 14 | 14 | 14 | 14 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 5A2 | 5A1 | 3A-1 | 3A1 | 7A1 | 7A-1 | 7A-1 | 7A1 | 15A-2 | 15A2 | 15A-1 | 15A1 | 35A-1 | 35A1 | 35A-2 | 35A2 | |
3 P | 1A | 2A | 1A | 1A | 5A2 | 5A1 | 2A | 2A | 7A-1 | 7A1 | 14A-1 | 14A1 | 5A1 | 5A1 | 5A2 | 5A2 | 35A1 | 35A-1 | 35A2 | 35A-2 | |
5 P | 1A | 2A | 3A-1 | 3A1 | 1A | 1A | 6A-1 | 6A1 | 7A-1 | 7A1 | 14A-1 | 14A1 | 3A-1 | 3A1 | 3A1 | 3A-1 | 7A-1 | 7A1 | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A1 | 3A-1 | 5A2 | 5A1 | 6A1 | 6A-1 | 1A | 1A | 2A | 2A | 15A2 | 15A-2 | 15A1 | 15A-1 | 5A2 | 5A2 | 5A1 | 5A1 | |
Type | |||||||||||||||||||||
210.2.1a | R | ||||||||||||||||||||
210.2.1b | R | ||||||||||||||||||||
210.2.1c1 | C | ||||||||||||||||||||
210.2.1c2 | C | ||||||||||||||||||||
210.2.1d1 | C | ||||||||||||||||||||
210.2.1d2 | C | ||||||||||||||||||||
210.2.2a1 | R | ||||||||||||||||||||
210.2.2a2 | R | ||||||||||||||||||||
210.2.2b1 | C | ||||||||||||||||||||
210.2.2b2 | C | ||||||||||||||||||||
210.2.2b3 | C | ||||||||||||||||||||
210.2.2b4 | C | ||||||||||||||||||||
210.2.3a1 | C | ||||||||||||||||||||
210.2.3a2 | C | ||||||||||||||||||||
210.2.3b1 | C | ||||||||||||||||||||
210.2.3b2 | C | ||||||||||||||||||||
210.2.6a1 | C | ||||||||||||||||||||
210.2.6a2 | C | ||||||||||||||||||||
210.2.6a3 | C | ||||||||||||||||||||
210.2.6a4 | C |
magma: CharacterTable(G);
Regular extensions
Data not computed