Show commands: Magma
Group invariants
Abstract group: | $S_8$ |
| |
Order: | $40320=2^{7} \cdot 3^{2} \cdot 5 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $35$ |
| |
Transitive number $t$: | $44$ |
| |
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2,4,8,3,6,12)(5,10,15,19,25,29,22)(7,14,18,24,28,34,9)(11,16,20,27,23,13,17)(21,26,32,35,30,31,33)$, $(1,3)(5,6)(9,12)(11,14)(17,23)(18,21)(19,24)(25,31)(27,29)(32,35)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Degree 7: None
Low degree siblings
8T50, 16T1838, 28T502, 30T1153Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10},1^{15}$ | $28$ | $2$ | $10$ | $( 4,10)( 5,11)( 6,14)( 7,15)(17,18)(20,26)(21,23)(25,32)(31,35)(33,34)$ |
2B | $2^{12},1^{11}$ | $105$ | $2$ | $12$ | $( 1,27)( 2,25)( 5,18)( 7,19)( 9,15)(10,20)(12,34)(13,35)(14,23)(16,31)(22,32)(24,33)$ |
2C | $2^{14},1^{7}$ | $210$ | $2$ | $14$ | $( 1, 5)( 3, 6)( 4,22)( 8,26)( 9,18)(10,33)(12,21)(13,15)(16,30)(17,31)(23,25)(27,35)(28,34)(29,32)$ |
2D | $2^{16},1^{3}$ | $420$ | $2$ | $16$ | $( 1,25)( 2,33)( 3, 7)( 4,29)( 5,27)( 6, 8)( 9,13)(10,14)(15,23)(16,21)(17,32)(18,24)(19,26)(20,35)(22,30)(28,31)$ |
3A | $3^{10},1^{5}$ | $112$ | $3$ | $20$ | $( 2, 3,22)( 4,25,20)( 5, 7,17)( 6,23,34)( 8,12,24)( 9,30,19)(10,32,26)(11,15,18)(13,16,27)(14,21,33)$ |
3B | $3^{11},1^{2}$ | $1120$ | $3$ | $22$ | $( 1,16,33)( 2,18, 7)( 3, 4,26)( 5,19,25)( 8,28,21)( 9,20,32)(10,22,15)(11,17,30)(12,13,14)(23,34,35)(24,27,31)$ |
4A | $4^{7},2^{3},1$ | $420$ | $4$ | $24$ | $( 1,31, 5,17)( 2,20)( 3,25, 6,23)( 4,34,22,28)( 8,33,26,10)( 9,27,18,35)(11,19)(12,29,21,32)(13,16,15,30)(14,24)$ |
4B | $4^{6},2^{4},1^{3}$ | $1260$ | $4$ | $22$ | $( 2, 7,12,35)( 3,17,29,11)( 4,26)( 5, 8,18,28)( 6,10)( 9,19,16,13)(14,23)(15,22,31,24)(20,21)(25,32,34,33)$ |
4C | $4^{7},2,1^{5}$ | $1260$ | $4$ | $22$ | $( 1, 7,16,18)( 2,33,29, 6)( 3,30,21,35)( 4,11, 8,13)( 5,10,27,12)(14,34)(19,22,31,23)(24,26,28,25)$ |
4D | $4^{7},2^{3},1$ | $2520$ | $4$ | $24$ | $( 1, 3, 9,12)( 2,27,30,29)( 4,18,15,21)( 5,25,35,14)( 6,11,32,31)( 7,23,10,17)( 8,22)(13,24,28,19)(20,26)(33,34)$ |
5A | $5^{7}$ | $1344$ | $5$ | $28$ | $( 1,35,30,13, 5)( 2,28,32,12, 6)( 3,10,25,14, 4)( 7,11,31,15, 9)( 8,23,33,20,21)(16,27,17,18,19)(22,26,24,29,34)$ |
6A | $6^{3},3^{4},2,1^{3}$ | $1120$ | $6$ | $24$ | $( 2,22, 3)( 4,26,25,10,20,32)( 5,18, 7,11,17,15)( 6,33,23,14,34,21)( 8,24,12)( 9,19,30)(13,27,16)(31,35)$ |
6B | $6^{3},3^{5},2$ | $1120$ | $6$ | $26$ | $( 1, 7,13,28,25,12)( 2,33,14)( 3,30,29)( 4,18,17, 5,26,20)( 6,22,31)( 8,15,16,27,32,24)( 9,35,23)(10,11)(19,34,21)$ |
6C | $6^{4},3^{2},2^{2},1$ | $1680$ | $6$ | $26$ | $( 1, 6,15, 5, 3,13)( 2,14,11)( 4,21, 9,22,12,18)( 8,26)(10,33)(16,31,23,30,17,25)(19,20,24)(27,28,29,35,34,32)$ |
6D | $6^{4},3^{3},1^{2}$ | $3360$ | $6$ | $26$ | $( 1,24,16,27,33,31)( 2,19,18,25, 7, 5)( 3,26, 4)( 8,21,28)( 9,22,20,15,32,10)(11,30,17)(12,23,13,34,14,35)$ |
6E | $6^{5},3,2$ | $3360$ | $6$ | $28$ | $( 1,15, 4,25,23,29)( 2,32, 9,33,17,13)( 3,21,31, 7,16,28)( 5,30,10,27,22,14)( 6,24,35, 8,18,20)(11,34,12)(19,26)$ |
7A | $7^{5}$ | $5760$ | $7$ | $30$ | $( 1,35,31,19,20, 8,15)( 2,23,33,16,22,10,21)( 3,11,29,30,17,26, 4)( 5, 6,25,27,13,12,32)( 7,18,28, 9,14,24,34)$ |
8A | $8^{3},4^{2},2,1$ | $5040$ | $8$ | $28$ | $( 2,29, 7,11,12, 3,35,17)( 4,21,26,20)( 5,24, 8,15,18,22,28,31)( 6,23,10,14)( 9,32,19,34,16,33,13,25)(27,30)$ |
10A | $10^{2},5^{3}$ | $4032$ | $10$ | $30$ | $( 1,28,35,26, 6, 5, 4, 9, 8, 3)( 2,31,10,19, 7)(11,20,23,24,25)(12,27,15,22,29,32,18,13,34,21)(14,17,16,30,33)$ |
12A | $12^{2},6,4,1$ | $3360$ | $12$ | $30$ | $( 1,16, 6,31,15,23, 5,30, 3,17,13,25)( 2,19,14,20,11,24)( 4,35,21,34, 9,32,22,27,12,28,18,29)( 8,10,26,33)$ |
15A | $15^{2},5$ | $2688$ | $15$ | $32$ | $( 1, 2,34,35,28,22,30,32,26,13,12,24, 5, 6,29)( 3,33,15,10,20, 9,25,21, 7,14, 8,11, 4,23,31)(16,17,19,27,18)$ |
Malle's constant $a(G)$: $1/10$
Character table
1A | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 4C | 4D | 5A | 6A | 6B | 6C | 6D | 6E | 7A | 8A | 10A | 12A | 15A | ||
Size | 1 | 28 | 105 | 210 | 420 | 112 | 1120 | 420 | 1260 | 1260 | 2520 | 1344 | 1120 | 1120 | 1680 | 3360 | 3360 | 5760 | 5040 | 4032 | 3360 | 2688 | |
2 P | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 2C | 2B | 2C | 2C | 5A | 3A | 3B | 3A | 3B | 3B | 7A | 4B | 5A | 6C | 15A | |
3 P | 1A | 2A | 2B | 2C | 2D | 1A | 1A | 4A | 4B | 4C | 4D | 5A | 2A | 2A | 2C | 2B | 2D | 7A | 8A | 10A | 4A | 5A | |
5 P | 1A | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 4C | 4D | 1A | 6A | 6B | 6C | 6D | 6E | 7A | 8A | 2A | 12A | 3A | |
7 P | 1A | 2A | 2B | 2C | 2D | 3A | 3B | 4A | 4B | 4C | 4D | 5A | 6A | 6B | 6C | 6D | 6E | 1A | 8A | 10A | 12A | 15A | |
Type | |||||||||||||||||||||||
40320.a.1a | R | ||||||||||||||||||||||
40320.a.1b | R | ||||||||||||||||||||||
40320.a.7a | R | ||||||||||||||||||||||
40320.a.7b | R | ||||||||||||||||||||||
40320.a.14a | R | ||||||||||||||||||||||
40320.a.14b | R | ||||||||||||||||||||||
40320.a.20a | R | ||||||||||||||||||||||
40320.a.20b | R | ||||||||||||||||||||||
40320.a.21a | R | ||||||||||||||||||||||
40320.a.21b | R | ||||||||||||||||||||||
40320.a.28a | R | ||||||||||||||||||||||
40320.a.28b | R | ||||||||||||||||||||||
40320.a.35a | R | ||||||||||||||||||||||
40320.a.35b | R | ||||||||||||||||||||||
40320.a.42a | R | ||||||||||||||||||||||
40320.a.56a | R | ||||||||||||||||||||||
40320.a.56b | R | ||||||||||||||||||||||
40320.a.64a | R | ||||||||||||||||||||||
40320.a.64b | R | ||||||||||||||||||||||
40320.a.70a | R | ||||||||||||||||||||||
40320.a.70b | R | ||||||||||||||||||||||
40320.a.90a | R |
Regular extensions
Data not computed