Properties

Label 35T38
35T38 1 7 1->7 35 1->35 2 4 2->4 31 2->31 3 5 3->5 29 3->29 4->3 30 4->30 6 5->6 33 5->33 6->1 32 6->32 7->2 34 7->34 8 28 8->28 8->35 9 25 9->25 9->33 10 26 10->26 10->30 11 24 11->24 11->29 12 27 12->27 12->31 13 22 13->22 13->34 14 23 14->23 14->32 15 19 15->19 15->23 16 16->15 16->26 17 17->16 17->28 18 21 18->21 18->25 19->18 19->27 20 20->17 20->24 21->20 21->22 22->10 22->18 23->13 23->16 24->14 24->21 25->8 25->19 26->9 26->17 27->11 27->15 28->12 28->20 29->6 29->14 30->5 30->9 31->3 31->11 32->7 32->13 33->1 33->8 34->4 34->10 35->2 35->12
Degree $35$
Order $24010$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_7^4:D_5$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(35, 38);
 

Group invariants

Abstract group:  $C_7^4:D_5$
Copy content magma:IdentifyGroup(G);
 
Order:  $24010=2 \cdot 5 \cdot 7^{4}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $35$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $38$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $7$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,35,2,31,3,29,6,32,7,34,4,30,5,33)(8,28,12,27,11,24,14,23,13,22,10,26,9,25)(15,19,18,21,20,17,16)$, $(1,7,2,4,3,5,6)(8,35,12,31,11,29,14,32,13,34,10,30,9,33)(15,23,16,26,17,28,20,24,21,22,18,25,19,27)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$10$:  $D_{5}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 5: $D_{5}$

Degree 7: None

Low degree siblings

35T38 x 7, 35T39 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

Character table not computed

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed