Show commands:
Magma
magma: G := TransitiveGroup(35, 36);
Group invariants
Abstract group: | $A_8$ | magma: IdentifyGroup(G);
| |
Order: | $20160=2^{6} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $35$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $36$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,2,4,8,3,6,12)(5,10,15,19,25,29,22)(7,14,18,24,28,34,9)(11,16,20,27,23,13,17)(21,26,32,35,30,31,33)$, $(1,3,7)(2,6,5)(9,10,12)(11,14,13)(16,18,21)(17,22,23)(19,26,24)(25,31,28)(27,33,29)(30,35,32)$ | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Degree 7: None
Low degree siblings
8T49, 15T72 x 2, 28T433Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{11}$ | $105$ | $2$ | $12$ | $( 1, 9)( 2,13)( 3,12)( 4, 7)(10,15)(17,21)(18,23)(19,29)(20,33)(24,27)(26,34)(28,30)$ |
2B | $2^{14},1^{7}$ | $210$ | $2$ | $14$ | $( 1,12)( 2,30)( 3, 9)( 4, 7)( 5,25)( 6,31)(10,15)(11,32)(13,28)(14,35)(17,18)(20,26)(21,23)(33,34)$ |
3A | $3^{10},1^{5}$ | $112$ | $3$ | $20$ | $( 1,18,12)( 2,33,30)( 3,21, 9)( 4, 8,15)( 5,27,32)( 6,29,35)( 7,16,10)(11,25,24)(13,28,26)(14,31,19)$ |
3B | $3^{11},1^{2}$ | $1120$ | $3$ | $22$ | $( 1,16, 9)( 2,27,35)( 3,18,10)( 4, 8,15)( 5,29,30)( 6,33,32)( 7,21,12)(11,28,19)(13,31,24)(14,25,26)(17,23,22)$ |
4A | $4^{6},2^{4},1^{3}$ | $1260$ | $4$ | $22$ | $( 1,21,34,13)( 2,26,17, 9)( 3,33,20,12)( 4, 6, 7,31)( 8,14)(10,19)(11,24,32,27)(15,29)(16,35)(18,23,30,28)$ |
4B | $4^{7},2^{3},1$ | $2520$ | $4$ | $24$ | $( 1,21,17, 9)( 2,33,34,30)( 3,18,23,12)( 4, 7)( 5,31)( 6,25)( 8,15,16,10)(11,29,32,19)(13,28,26,20)(14,27,35,24)$ |
5A | $5^{7}$ | $1344$ | $5$ | $28$ | $( 1,18,17,22,12)( 2,25, 5,33,32)( 3, 4, 7,21,10)( 6,31,26,14,28)( 8,15,16,23, 9)(11,27,34,30,24)(13,29,35,19,20)$ |
6A | $6^{4},3^{2},2^{2},1$ | $1680$ | $6$ | $26$ | $( 1,18,12)( 2,16,30, 7,33,10)( 3,27, 9, 5,21,32)( 4,24,15,25, 8,11)( 6,29,35)(13,31,26,14,28,19)(17,22)(23,34)$ |
6B | $6^{4},3^{3},1^{2}$ | $3360$ | $6$ | $26$ | $( 1, 4, 7,21,17, 9)( 2, 6,26,32,27,11)( 3,18,10)( 8,15,16,23,22,12)(13,24,34)(14,19,35,28,25,33)(20,30,29)$ |
7A1 | $7^{5}$ | $2880$ | $7$ | $30$ | $( 1, 4,26,14,27,23,30)( 2,18,10,19,11,16,35)( 3,25, 7,31, 5,21,32)( 6,33,17, 9,24,15,28)( 8,20,13,29,34,22,12)$ |
7A-1 | $7^{5}$ | $2880$ | $7$ | $30$ | $( 1, 8,20,28,29,34,22)( 2,12,15,26,31,27,23)( 3,24, 4,13,35,33,17)( 5, 9,11,10,14,32,21)( 6,30,18, 7,19,25,16)$ |
15A1 | $15^{2},5$ | $1344$ | $15$ | $32$ | $( 1,18,17,22,12)( 2, 6, 7,33,14, 3,25,31,21,32,28, 4, 5,26,10)( 8,11,19,23,30,29,15,27,20, 9,24,35,16,34,13)$ |
15A-1 | $15^{2},5$ | $1344$ | $15$ | $32$ | $( 1,12,18,17,22)( 2,29, 4,27,20, 3,24, 6,16,34,28, 8,25,19,23)( 5,13,15,32,26, 7,30,35,10,33,31, 9,11,14,21)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 7A1 | 7A-1 | 15A1 | 15A-1 | ||
Size | 1 | 105 | 210 | 112 | 1120 | 1260 | 2520 | 1344 | 1680 | 3360 | 2880 | 2880 | 1344 | 1344 | |
2 P | 1A | 1A | 1A | 3A | 3B | 2A | 2B | 5A | 3A | 3B | 7A1 | 7A-1 | 15A1 | 15A-1 | |
3 P | 1A | 2A | 2B | 1A | 1A | 4A | 4B | 5A | 2B | 2A | 7A-1 | 7A1 | 5A | 5A | |
5 P | 1A | 2A | 2B | 3A | 3B | 4A | 4B | 1A | 6A | 6B | 7A-1 | 7A1 | 3A | 3A | |
7 P | 1A | 2A | 2B | 3A | 3B | 4A | 4B | 5A | 6A | 6B | 1A | 1A | 15A-1 | 15A1 | |
Type |
magma: CharacterTable(G);
Regular extensions
Data not computed