Properties

Label 35T31
Order \(5040\)
n \(35\)
Cyclic No
Abelian No
Solvable No
Primitive Yes
$p$-group No

Learn more about

Group action invariants

Degree $n$ :  $35$
Transitive number $t$ :  $31$
Parity:  $1$
Primitive:  Yes
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2,4,8,3,6,12)(5,10,15,19,25,29,22)(7,14,18,24,28,34,9)(11,16,20,27,23,13,17)(21,26,32,35,30,31,33), (2,5)(3,7)(9,10)(13,14)(16,21)(17,22)(19,26)(27,33)(28,31)(30,32)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 5: None

Degree 7: None

Low degree siblings

7T7, 14T46, 21T38, 30T565, 42T411, 42T412, 42T413, 42T418

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 5, 5, 5, 5, 5, 5, 5 $ $504$ $5$ $( 1,28,13,14,17)( 2,16,15,32, 5)( 3,27,11,10, 7)( 4,30,21,34,24) ( 6,19,18,35,26)( 8,25, 9,33,23)(12,31,22,29,20)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $21$ $2$ $( 1,11)( 3,14)( 7,13)( 8,20)( 9,31)(10,28)(12,25)(17,27)(22,33)(23,29)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1 $ $105$ $2$ $( 1,33)( 3,14)( 5,34)( 7,29)( 8,31)( 9,20)(10,28)(11,22)(12,25)(13,23)(15,21) (17,27)(24,30)(26,35)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1 $ $70$ $3$ $( 1,31,29)( 2, 4,16)( 3,25,27)( 5,21,24)( 6,18,19)( 7,33, 8)( 9,23,11) (12,17,14)(13,22,20)(15,30,34)$
$ 6, 6, 6, 6, 3, 3, 2, 2, 1 $ $210$ $6$ $( 1, 7,31,33,29, 8)( 2,16, 4)( 3,17,25,14,27,12)( 5,30,21,34,24,15)( 6,19,18) ( 9,22,23,20,11,13)(10,28)(26,35)$
$ 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 1 $ $630$ $4$ $( 1,22,33,11)( 2,18)( 3,21,14,15)( 4, 6)( 5,12,34,25)( 7, 9,29,20) ( 8,23,31,13)(10,35,28,26)(16,19)(17,30,27,24)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ $105$ $2$ $( 1, 8)( 2, 4)( 3,12)( 5,34)( 7,29)( 9,22)(10,28)(11,20)(13,23)(14,25)(15,24) (17,27)(18,19)(21,30)(26,35)(31,33)$
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1 $ $280$ $3$ $( 2,35,17)( 3,15, 7)( 4,26,27)( 5,28,18)( 6,32,16)( 9,20,33)(10,19,34) (11,31,22)(12,24,29)(13,25,21)(14,30,23)$
$ 6, 6, 6, 6, 6, 3, 2 $ $840$ $6$ $( 1, 8)( 2,27,35, 4,17,26)( 3,29,15,12, 7,24)( 5,19,28,34,18,10)( 6,16,32) ( 9,31,20,22,33,11)(13,30,25,23,21,14)$
$ 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 1 $ $210$ $4$ $( 1,12,22,18)( 2,25)( 3, 4)( 5,32,34,27)( 6,28)( 7,10,23,16)( 8, 9,21,15) (11,24,30,33)(13,26,35,29)(14,20,19,31)$
$ 12, 12, 6, 4, 1 $ $420$ $12$ $( 1,14,34,18,31,32,22,19, 5,12,20,27)( 2, 6, 4,25,28, 3)( 7,10,23,16) ( 8,11,29,15,33,35,21,30,26, 9,24,13)$
$ 10, 10, 5, 5, 5 $ $504$ $10$ $( 1,27,14, 7,28,11,17, 3,13,10)( 2, 5,32,15,16)( 4,24,34,21,30) ( 6,26,35,18,19)( 8,29,33,31,25,20,23,22, 9,12)$
$ 6, 6, 6, 3, 3, 3, 3, 2, 1, 1, 1 $ $420$ $6$ $( 1,31, 5)( 2,35, 4,11,28, 9)( 3,30, 6,15,25,13)( 8,33,26)(12,14,32)(16,23) (18,20,27,22,19,34)(21,24,29)$
$ 7, 7, 7, 7, 7 $ $720$ $7$ $( 1,10, 3,17,28, 7,32)( 2,23,27,31,26,15,12)( 4, 6,34,29,33,21,18) ( 5,35, 8,14,22,16,25)( 9,19,20,13,30,24,11)$

Group invariants

Order:  $5040=2^{4} \cdot 3^{2} \cdot 5 \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table:   
      2  4  .  1  3  4  3  3   2  4  1  4  2  1   1  3
      3  2  .  2  2  1  1  1   1  1  1  1  1  .   .  .
      5  1  .  .  .  .  .  .   .  .  .  1  .  1   1  .
      7  1  1  .  .  .  .  .   .  .  .  .  .  .   .  .

        1a 7a 3a 3b 2a 4a 6a 12a 2b 6b 2c 6c 5a 10a 4b
     2P 1a 7a 3a 3b 1a 2a 3b  6a 1a 3a 1a 3b 5a  5a 2a
     3P 1a 7a 1a 1a 2a 4a 2a  4a 2b 2b 2c 2c 5a 10a 4b
     5P 1a 7a 3a 3b 2a 4a 6a 12a 2b 6b 2c 6c 1a  2c 4b
     7P 1a 1a 3a 3b 2a 4a 6a 12a 2b 6b 2c 6c 5a 10a 4b
    11P 1a 7a 3a 3b 2a 4a 6a 12a 2b 6b 2c 6c 5a 10a 4b

X.1      1  1  1  1  1  1  1   1  1  1  1  1  1   1  1
X.2      1  1  1  1  1 -1  1  -1 -1 -1 -1 -1  1  -1  1
X.3      6 -1  .  3  2  2 -1  -1  .  .  4  1  1  -1  .
X.4      6 -1  .  3  2 -2 -1   1  .  . -4 -1  1   1  .
X.5     14  .  2 -1  2 -2 -1   1  .  .  4  1 -1  -1  .
X.6     14  . -1  2  2  .  2   . -2  1 -6  . -1  -1  .
X.7     14  .  2 -1  2  2 -1  -1  .  . -4 -1 -1   1  .
X.8     14  . -1  2  2  .  2   .  2 -1  6  . -1   1  .
X.9     15  1  .  3 -1 -1 -1  -1  3  . -5  1  .   . -1
X.10    15  1  .  3 -1  1 -1   1 -3  .  5 -1  .   . -1
X.11    20 -1  2  2 -4  .  2   .  .  .  .  .  .   .  .
X.12    21  .  . -3  1 -1  1  -1 -3  .  1  1  1   1 -1
X.13    21  .  . -3  1  1  1   1  3  . -1 -1  1  -1 -1
X.14    35  . -1 -1 -1  1 -1   1 -1 -1 -5  1  .   .  1
X.15    35  . -1 -1 -1 -1 -1  -1  1  1  5 -1  .   .  1