Show commands:
Magma
magma: G := TransitiveGroup(35, 28);
Group invariants
Abstract group: | $A_7$ | magma: IdentifyGroup(G);
| |
Order: | $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $35$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $28$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,2,4,8,3,6,12)(5,10,15,19,25,29,22)(7,14,18,24,28,34,9)(11,16,20,27,23,13,17)(21,26,32,35,30,31,33)$, $(2,5,11)(3,7,15)(4,9,10)(6,13,14)(16,21,23)(17,18,22)(19,26,20)(25,30,32)(27,33,34)(28,31,35)$ | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 5: None
Degree 7: None
Low degree siblings
7T6, 15T47 x 2, 21T33, 42T294, 42T299Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14},1^{7}$ | $105$ | $2$ | $14$ | $( 1,30)( 3,19)( 5,34)( 7,35)( 8, 9)(11,33)(13,29)(15,31)(16,28)(17,32)(18,25)(20,21)(22,24)(23,26)$ |
3A | $3^{10},1^{5}$ | $70$ | $3$ | $20$ | $( 1,12,24)( 2,22,30)( 3, 9,19)( 4,20,15)( 5,17,32)( 6,23,35)( 7,10,26)(11,18,25)(13,16,28)(14,21,31)$ |
3B | $3^{11},1^{2}$ | $280$ | $3$ | $22$ | $( 1,33, 9)( 2,27,35)( 3,29,30)( 4,17,26)( 5,18,10)( 6,16,32)( 7,21,12)( 8,31,22)(13,15,14)(19,28,34)(23,24,25)$ |
4A | $4^{7},2^{3},1$ | $630$ | $4$ | $24$ | $( 1,22,30,24)( 2,12)( 3, 9,19, 8)( 4, 6)( 5,18,34,25)( 7,21,35,20)(10,14)(11,17,33,32)(13,16,29,28)(15,23,31,26)$ |
5A | $5^{7}$ | $504$ | $5$ | $28$ | $( 1,28,26,19,17)( 2,10, 8,27, 5)( 3,32,24,16, 7)( 4,33, 9,34,11)( 6,14,12,29,13)(15,25,21,30,23)(18,31,22,35,20)$ |
6A | $6^{4},3^{2},2^{2},1$ | $210$ | $6$ | $26$ | $( 1,16,12,28,24,13)( 2,30,22)( 3,19, 9)( 4,25,20,11,15,18)( 5, 7,17,10,32,26)( 6,31,23,14,35,21)( 8,27)(33,34)$ |
7A1 | $7^{5}$ | $360$ | $7$ | $30$ | $( 1,20,33, 6,16, 9,32)( 2,19,30,35,15,11,14)( 3,24,31,34,18,13,10)( 4,27,12,28, 8,25,29)( 5,17,22,26, 7,23,21)$ |
7A-1 | $7^{5}$ | $360$ | $7$ | $30$ | $( 1,32, 9,16, 6,33,20)( 2,14,11,15,35,30,19)( 3,10,13,18,34,31,24)( 4,29,25, 8,28,12,27)( 5,21,23, 7,26,22,17)$ |
Malle's constant $a(G)$: $1/14$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A | 3B | 4A | 5A | 6A | 7A1 | 7A-1 | ||
Size | 1 | 105 | 70 | 280 | 630 | 504 | 210 | 360 | 360 | |
2 P | 1A | 1A | 3A | 3B | 2A | 5A | 3A | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 1A | 4A | 5A | 2A | 7A-1 | 7A1 | |
5 P | 1A | 2A | 3A | 3B | 4A | 1A | 6A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A | 3B | 4A | 5A | 6A | 1A | 1A | |
Type | ||||||||||
2520.a.1a | R | |||||||||
2520.a.6a | R | |||||||||
2520.a.10a1 | C | |||||||||
2520.a.10a2 | C | |||||||||
2520.a.14a | R | |||||||||
2520.a.14b | R | |||||||||
2520.a.15a | R | |||||||||
2520.a.21a | R | |||||||||
2520.a.35a | R |
magma: CharacterTable(G);
Regular extensions
Data not computed