Properties

Label 35T28
Degree $35$
Order $2520$
Cyclic no
Abelian no
Solvable no
Primitive yes
$p$-group no
Group: $A_7$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(35, 28);
 

Group invariants

Abstract group:  $A_7$
magma: IdentifyGroup(G);
 
Order:  $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $35$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $28$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
magma: IsEven(G);
 
Primitive:  yes
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2,4,8,3,6,12)(5,10,15,19,25,29,22)(7,14,18,24,28,34,9)(11,16,20,27,23,13,17)(21,26,32,35,30,31,33)$, $(2,5,11)(3,7,15)(4,9,10)(6,13,14)(16,21,23)(17,18,22)(19,26,20)(25,30,32)(27,33,34)(28,31,35)$
magma: Generators(G);
 

Low degree resolvents

none

Resolvents shown for degrees $\leq 47$

Subfields

Degree 5: None

Degree 7: None

Low degree siblings

7T6, 15T47 x 2, 21T33, 42T294, 42T299

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{35}$ $1$ $1$ $0$ $()$
2A $2^{14},1^{7}$ $105$ $2$ $14$ $( 1,30)( 3,19)( 5,34)( 7,35)( 8, 9)(11,33)(13,29)(15,31)(16,28)(17,32)(18,25)(20,21)(22,24)(23,26)$
3A $3^{10},1^{5}$ $70$ $3$ $20$ $( 1,12,24)( 2,22,30)( 3, 9,19)( 4,20,15)( 5,17,32)( 6,23,35)( 7,10,26)(11,18,25)(13,16,28)(14,21,31)$
3B $3^{11},1^{2}$ $280$ $3$ $22$ $( 1,33, 9)( 2,27,35)( 3,29,30)( 4,17,26)( 5,18,10)( 6,16,32)( 7,21,12)( 8,31,22)(13,15,14)(19,28,34)(23,24,25)$
4A $4^{7},2^{3},1$ $630$ $4$ $24$ $( 1,22,30,24)( 2,12)( 3, 9,19, 8)( 4, 6)( 5,18,34,25)( 7,21,35,20)(10,14)(11,17,33,32)(13,16,29,28)(15,23,31,26)$
5A $5^{7}$ $504$ $5$ $28$ $( 1,28,26,19,17)( 2,10, 8,27, 5)( 3,32,24,16, 7)( 4,33, 9,34,11)( 6,14,12,29,13)(15,25,21,30,23)(18,31,22,35,20)$
6A $6^{4},3^{2},2^{2},1$ $210$ $6$ $26$ $( 1,16,12,28,24,13)( 2,30,22)( 3,19, 9)( 4,25,20,11,15,18)( 5, 7,17,10,32,26)( 6,31,23,14,35,21)( 8,27)(33,34)$
7A1 $7^{5}$ $360$ $7$ $30$ $( 1,20,33, 6,16, 9,32)( 2,19,30,35,15,11,14)( 3,24,31,34,18,13,10)( 4,27,12,28, 8,25,29)( 5,17,22,26, 7,23,21)$
7A-1 $7^{5}$ $360$ $7$ $30$ $( 1,32, 9,16, 6,33,20)( 2,14,11,15,35,30,19)( 3,10,13,18,34,31,24)( 4,29,25, 8,28,12,27)( 5,21,23, 7,26,22,17)$

Malle's constant $a(G)$:     $1/14$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 3A 3B 4A 5A 6A 7A1 7A-1
Size 1 105 70 280 630 504 210 360 360
2 P 1A 1A 3A 3B 2A 5A 3A 7A1 7A-1
3 P 1A 2A 1A 1A 4A 5A 2A 7A-1 7A1
5 P 1A 2A 3A 3B 4A 1A 6A 7A-1 7A1
7 P 1A 2A 3A 3B 4A 5A 6A 1A 1A
Type
2520.a.1a R 1 1 1 1 1 1 1 1 1
2520.a.6a R 6 2 3 0 0 1 1 1 1
2520.a.10a1 C 10 2 1 1 0 0 1 ζ731ζ7ζ72 ζ73+ζ7+ζ72
2520.a.10a2 C 10 2 1 1 0 0 1 ζ73+ζ7+ζ72 ζ731ζ7ζ72
2520.a.14a R 14 2 1 2 0 1 1 0 0
2520.a.14b R 14 2 2 1 0 1 2 0 0
2520.a.15a R 15 1 3 0 1 0 1 1 1
2520.a.21a R 21 1 3 0 1 1 1 0 0
2520.a.35a R 35 1 1 1 1 0 1 0 0

magma: CharacterTable(G);
 

Regular extensions

Data not computed