Properties

 Label 35T28 Order $$2520$$ n $$35$$ Cyclic No Abelian No Solvable No Primitive Yes $p$-group No Group: $A_7$

Group action invariants

 Degree $n$ : $35$ Transitive number $t$ : $28$ Group : $A_7$ Parity: $1$ Primitive: Yes Nilpotency class: $-1$ (not nilpotent) Generators: (1,2,4,8,3,6,12)(5,10,15,19,25,29,22)(7,14,18,24,28,34,9)(11,16,20,27,23,13,17)(21,26,32,35,30,31,33), (2,5,11)(3,7,15)(4,9,10)(6,13,14)(16,21,23)(17,18,22)(19,26,20)(25,30,32)(27,33,34)(28,31,35) $|\Aut(F/K)|$: $1$

Low degree resolvents

None

Resolvents shown for degrees $\leq 47$

Degree 5: None

Degree 7: None

Low degree siblings

7T6, 15T47 x 2, 21T33, 42T294, 42T299

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

 Cycle Type Size Order Representative $1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$ $1$ $1$ $()$ $5, 5, 5, 5, 5, 5, 5$ $504$ $5$ $( 1,22,20, 4, 5)( 2,17,28,34,31)( 3,23,25, 6, 7)( 8, 9,11,18,26) (10,27,35,33,19)(12,13,15,21,24)(14,16,32,29,30)$ $7, 7, 7, 7, 7$ $360$ $7$ $( 1, 2,34,15, 3, 6,35)( 4,32, 7,19,29,11,22)( 5,30, 8,14,23,18,28) ( 9,12,10,17,16,27,13)(20,21,25,26,31,24,33)$ $7, 7, 7, 7, 7$ $360$ $7$ $( 1,35, 6, 3,15,34, 2)( 4,22,11,29,19, 7,32)( 5,28,18,23,14, 8,30) ( 9,13,27,16,17,10,12)(20,33,24,31,26,25,21)$ $3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1$ $280$ $3$ $( 1,13,34)( 2,12,20)( 3, 9,23)( 4,24,14)( 5,29,15)( 6, 8,11)( 7,27,35) (10,25,19)(16,32,31)(17,28,30)(18,26,33)$ $3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1$ $70$ $3$ $( 1,17,12)( 2,34,30)( 3,23, 9)( 4,15,16)( 5,32,24)( 6,35,19)( 7,10, 8) (11,27,25)(13,28,20)(14,29,31)$ $2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1$ $105$ $2$ $( 1,12)( 2,30)( 3, 9)( 4, 7)( 5,25)( 6,31)(10,15)(11,32)(13,28)(14,35)(17,18) (20,26)(21,23)(33,34)$ $4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 1$ $630$ $4$ $( 1,26,12,20)( 2,33,30,34)( 3,21, 9,23)( 4,11, 7,32)( 5,10,25,15)( 6,14,31,35) ( 8,24)(13,17,28,18)(16,27)(19,29)$ $6, 6, 6, 6, 3, 3, 2, 2, 1$ $210$ $6$ $( 1,26, 2,18,28,33)( 3,21)( 4,25,31, 7, 5, 6)( 8,24,19,16,27,29)( 9,23) (10,11,35)(12,20,30,17,13,34)(14,15,32)$

Group invariants

 Order: $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ Cyclic: No Abelian: No Solvable: No GAP id: Data not available
 Character table:  2 3 . . . 3 2 2 2 . 3 2 . . . 1 2 1 . 2 5 1 1 . . . . . . . 7 1 . 1 1 . . . . . 1a 5a 7a 7b 2a 3a 6a 4a 3b 2P 1a 5a 7a 7b 1a 3a 3a 2a 3b 3P 1a 5a 7b 7a 2a 1a 2a 4a 1a 5P 1a 1a 7b 7a 2a 3a 6a 4a 3b 7P 1a 5a 1a 1a 2a 3a 6a 4a 3b X.1 1 1 1 1 1 1 1 1 1 X.2 6 1 -1 -1 2 3 -1 . . X.3 10 . A /A -2 1 1 . 1 X.4 10 . /A A -2 1 1 . 1 X.5 14 -1 . . 2 2 2 . -1 X.6 14 -1 . . 2 -1 -1 . 2 X.7 15 . 1 1 -1 3 -1 -1 . X.8 21 1 . . 1 -3 1 -1 . X.9 35 . . . -1 -1 -1 1 -1 A = E(7)^3+E(7)^5+E(7)^6 = (-1-Sqrt(-7))/2 = -1-b7