Show commands: Magma
Group invariants
Abstract group: | $C_7:C_3\times S_5$ |
| |
Order: | $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $35$ |
| |
Transitive number $t$: | $25$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,10,13,18,24,26,35,5,7,12,20,22,28,32)(2,9,14,19,23,29,34,4,8,15,17,25,30,33,3,6,11,16,21,27,31)$, $(1,25,26,4,24,29,5,23,28,3,22,27)(2,21,30)(6,34,15)(7,31,12,9,35,14,10,33,13,8,32,11)(16,18,17,20)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $21$: $C_7:C_3$ $42$: $(C_7:C_3) \times C_2$ $120$: $S_5$ $360$: $S_5 \times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $S_5$
Degree 7: $C_7:C_3$
Low degree siblings
42T296Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{7},1^{21}$ | $10$ | $2$ | $7$ | $( 2, 5)( 6,10)(12,15)(18,19)(21,22)(26,30)(32,34)$ |
2B | $2^{14},1^{7}$ | $15$ | $2$ | $14$ | $( 1, 4)( 2, 5)( 6,10)( 7, 9)(11,13)(12,15)(17,20)(18,19)(21,22)(23,24)(26,30)(27,28)(32,34)(33,35)$ |
3A1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,24,35)( 2,21,34)( 3,25,31)( 4,23,33)( 5,22,32)(11,27,17)(12,26,18)(13,28,20)(14,29,16)(15,30,19)$ |
3A-1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,35,24)( 2,34,21)( 3,31,25)( 4,33,23)( 5,32,22)(11,17,27)(12,18,26)(13,20,28)(14,16,29)(15,19,30)$ |
3B | $3^{7},1^{14}$ | $20$ | $3$ | $14$ | $( 1, 3, 4)( 7, 8, 9)(11,13,14)(16,17,20)(23,24,25)(27,28,29)(31,33,35)$ |
3C1 | $3^{11},1^{2}$ | $140$ | $3$ | $22$ | $( 1,29, 6)( 2,28, 8)( 3,30, 7)( 4,27, 9)( 5,26,10)(13,14,15)(16,21,35)(17,23,33)(18,22,32)(19,24,31)(20,25,34)$ |
3C-1 | $3^{11},1^{2}$ | $140$ | $3$ | $22$ | $( 1, 6,29)( 2, 8,28)( 3, 7,30)( 4, 9,27)( 5,10,26)(13,15,14)(16,35,21)(17,33,23)(18,32,22)(19,31,24)(20,34,25)$ |
4A | $4^{7},1^{7}$ | $30$ | $4$ | $21$ | $( 1, 2, 4, 5)( 6, 9,10, 7)(11,12,13,15)(17,18,20,19)(21,23,22,24)(26,28,30,27)(32,35,34,33)$ |
5A | $5^{7}$ | $24$ | $5$ | $28$ | $( 1, 3, 4, 5, 2)( 6, 7, 8, 9,10)(11,12,15,13,14)(16,17,18,19,20)(21,24,25,23,22)(26,30,28,29,27)(31,33,32,34,35)$ |
6A | $3^{7},2^{7}$ | $20$ | $6$ | $21$ | $( 1, 4, 3)( 2, 5)( 6,10)( 7, 9, 8)(11,14,13)(12,15)(16,20,17)(18,19)(21,22)(23,25,24)(26,30)(27,29,28)(31,35,33)(32,34)$ |
6B1 | $6^{2},3^{6},2,1^{3}$ | $70$ | $6$ | $23$ | $( 1,23,35, 4,24,33)( 2,21,34)( 3,25,31)( 5,22,32)( 7, 9)(11,28,17,13,27,20)(12,26,18)(14,29,16)(15,30,19)$ |
6B-1 | $6^{2},3^{6},2,1^{3}$ | $70$ | $6$ | $23$ | $( 1,33,24, 4,35,23)( 2,34,21)( 3,31,25)( 5,32,22)( 7, 9)(11,20,27,13,17,28)(12,18,26)(14,16,29)(15,19,30)$ |
6C1 | $6^{4},3^{2},2^{2},1$ | $105$ | $6$ | $26$ | $( 1,28,24)( 2,29,21, 3,30,25)( 4,26,23, 5,27,22)( 6,14,34, 8,15,31)( 7,13,35)( 9,12,33,10,11,32)(16,19)(17,18)$ |
6C-1 | $6^{4},3^{2},2^{2},1$ | $105$ | $6$ | $26$ | $( 1,24,28)( 2,25,30, 3,21,29)( 4,22,27, 5,23,26)( 6,31,15, 8,34,14)( 7,35,13)( 9,32,11,10,33,12)(16,19)(17,18)$ |
6D1 | $6^{2},3^{7},2$ | $140$ | $6$ | $25$ | $( 1, 6,29)( 2, 8,28)( 3, 7,30)( 4,10,27, 5, 9,26)(11,12)(13,15,14)(16,35,21)(17,32,23,18,33,22)(19,31,24)(20,34,25)$ |
6D-1 | $6^{2},3^{7},2$ | $140$ | $6$ | $25$ | $( 1,29, 6)( 2,28, 8)( 3,30, 7)( 4,26, 9, 5,27,10)(11,12)(13,14,15)(16,21,35)(17,22,33,18,23,32)(19,24,31)(20,25,34)$ |
7A1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,20,35,13,28, 7,24)( 2,19,34,15,30, 6,21)( 3,16,31,14,29, 8,25)( 4,17,33,11,27, 9,23)( 5,18,32,12,26,10,22)$ |
7A-1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,24, 7,28,13,35,20)( 2,21, 6,30,15,34,19)( 3,25, 8,29,14,31,16)( 4,23, 9,27,11,33,17)( 5,22,10,26,12,32,18)$ |
12A1 | $12^{2},4,3^{2},1$ | $210$ | $12$ | $29$ | $( 1,24,28)( 2,23,29, 5,21,27, 3,22,30, 4,25,26)( 6,33,14,10,34,11, 8,32,15, 9,31,12)( 7,35,13)(16,18,19,17)$ |
12A-1 | $12^{2},4,3^{2},1$ | $210$ | $12$ | $29$ | $( 1,28,24)( 2,26,25, 4,30,22, 3,27,21, 5,29,23)( 6,12,31, 9,15,32, 8,11,34,10,14,33)( 7,13,35)(16,17,19,18)$ |
14A1 | $14,7^{3}$ | $30$ | $14$ | $31$ | $( 1,35,28,24,20,13, 7)( 2,32,30,22,19,12, 6, 5,34,26,21,18,15,10)( 3,31,29,25,16,14, 8)( 4,33,27,23,17,11, 9)$ |
14A-1 | $14,7^{3}$ | $30$ | $14$ | $31$ | $( 1, 7,13,20,24,28,35)( 2,10,15,18,21,26,34, 5, 6,12,19,22,30,32)( 3, 8,14,16,25,29,31)( 4, 9,11,17,23,27,33)$ |
14B1 | $14^{2},7$ | $45$ | $14$ | $32$ | $( 1,27,20, 9,35,23,13, 4,28,17, 7,33,24,11)( 2,26,19,10,34,22,15, 5,30,18, 6,32,21,12)( 3,29,16, 8,31,25,14)$ |
14B-1 | $14^{2},7$ | $45$ | $14$ | $32$ | $( 1,11,24,33, 7,17,28, 4,13,23,35, 9,20,27)( 2,12,21,32, 6,18,30, 5,15,22,34,10,19,26)( 3,14,25,31, 8,16,29)$ |
15A1 | $15^{2},5$ | $168$ | $15$ | $32$ | $( 1,33,21, 3,32,24, 4,34,25, 5,35,23, 2,31,22)( 6, 8,10, 7, 9)(11,19,29,12,20,27,15,16,26,13,17,30,14,18,28)$ |
15A-1 | $15^{2},5$ | $168$ | $15$ | $32$ | $( 1,22,31, 2,23,35, 5,25,34, 4,24,32, 3,21,33)( 6, 9, 7,10, 8)(11,28,18,14,30,17,13,26,16,15,27,20,12,29,19)$ |
21A1 | $21,7^{2}$ | $60$ | $21$ | $32$ | $( 1,25, 9,28,14,33,20, 3,23, 7,29,11,35,16, 4,24, 8,27,13,31,17)( 2,21, 6,30,15,34,19)( 5,22,10,26,12,32,18)$ |
21A-1 | $21,7^{2}$ | $60$ | $21$ | $32$ | $( 1,17,31,13,27, 8,24, 4,16,35,11,29, 7,23, 3,20,33,14,28, 9,25)( 2,19,34,15,30, 6,21)( 5,18,32,12,26,10,22)$ |
28A1 | $28,7$ | $90$ | $28$ | $33$ | $( 1,32,27,21,20,12, 9, 2,35,26,23,19,13,10, 4,34,28,22,17,15, 7, 5,33,30,24,18,11, 6)( 3,31,29,25,16,14, 8)$ |
28A-1 | $28,7$ | $90$ | $28$ | $33$ | $( 1, 6,11,18,24,30,33, 5, 7,15,17,22,28,34, 4,10,13,19,23,26,35, 2, 9,12,20,21,27,32)( 3, 8,14,16,25,29,31)$ |
35A1 | $35$ | $72$ | $35$ | $34$ | $( 1,10,11,16,21,28,32, 4, 8,15,20,22,27,31, 2, 7,12,17,25,30,35, 5, 9,14,19,24,26,33, 3, 6,13,18,23,29,34)$ |
35A-1 | $35$ | $72$ | $35$ | $34$ | $( 1,34,29,23,18,13, 6, 3,33,26,24,19,14, 9, 5,35,30,25,17,12, 7, 2,31,27,22,20,15, 8, 4,32,28,21,16,11,10)$ |
42A1 | $21,14$ | $60$ | $42$ | $33$ | $( 1,11,25,35, 9,16,28, 4,14,24,33, 8,20,27, 3,13,23,31, 7,17,29)( 2,12,21,32, 6,18,30, 5,15,22,34,10,19,26)$ |
42A-1 | $21,14$ | $60$ | $42$ | $33$ | $( 1,29,17, 7,31,23,13, 3,27,20, 8,33,24,14, 4,28,16, 9,35,25,11)( 2,26,19,10,34,22,15, 5,30,18, 6,32,21,12)$ |
Malle's constant $a(G)$: $1/7$
Character table
35 x 35 character table
Regular extensions
Data not computed