Show commands:
Magma
magma: G := TransitiveGroup(35, 25);
Group invariants
Abstract group: | $C_7:C_3\times S_5$ | magma: IdentifyGroup(G);
| |
Order: | $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $35$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $25$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,10,13,18,24,26,35,5,7,12,20,22,28,32)(2,9,14,19,23,29,34,4,8,15,17,25,30,33,3,6,11,16,21,27,31)$, $(1,25,26,4,24,29,5,23,28,3,22,27)(2,21,30)(6,34,15)(7,31,12,9,35,14,10,33,13,8,32,11)(16,18,17,20)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $21$: $C_7:C_3$ $42$: $(C_7:C_3) \times C_2$ $120$: $S_5$ $360$: $S_5 \times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $S_5$
Degree 7: $C_7:C_3$
Low degree siblings
42T296Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{7},1^{21}$ | $10$ | $2$ | $7$ | $( 3, 5)( 8,10)(12,14)(16,18)(22,25)(26,29)(31,32)$ |
2B | $2^{14},1^{7}$ | $15$ | $2$ | $14$ | $( 1, 2)( 3, 5)( 6, 7)( 8,10)(12,14)(13,15)(16,18)(19,20)(21,24)(22,25)(26,29)(28,30)(31,32)(34,35)$ |
3A1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,24,35)( 2,21,34)( 3,25,31)( 4,23,33)( 5,22,32)(11,27,17)(12,26,18)(13,28,20)(14,29,16)(15,30,19)$ |
3A-1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,35,24)( 2,34,21)( 3,31,25)( 4,33,23)( 5,32,22)(11,17,27)(12,18,26)(13,20,28)(14,16,29)(15,19,30)$ |
3B | $3^{7},1^{14}$ | $20$ | $3$ | $14$ | $( 1, 4, 2)( 6, 7, 9)(11,15,13)(17,19,20)(21,24,23)(27,30,28)(33,34,35)$ |
3C1 | $3^{11},1^{2}$ | $140$ | $3$ | $22$ | $( 1, 6,17)( 2, 9,20)( 3, 8,16)( 4, 7,19)( 5,10,18)(11,28,21)(12,26,22)(13,30,23)(14,29,25)(15,27,24)(33,35,34)$ |
3C-1 | $3^{11},1^{2}$ | $140$ | $3$ | $22$ | $( 1,17, 6)( 2,20, 9)( 3,16, 8)( 4,19, 7)( 5,18,10)(11,21,28)(12,22,26)(13,23,30)(14,25,29)(15,24,27)(33,34,35)$ |
4A | $4^{7},1^{7}$ | $30$ | $4$ | $21$ | $( 1, 5, 2, 3)( 6, 8, 7,10)(12,15,14,13)(16,20,18,19)(21,25,24,22)(26,30,29,28)(31,35,32,34)$ |
5A | $5^{7}$ | $24$ | $5$ | $28$ | $( 1, 4, 5, 3, 2)( 6, 7, 9,10, 8)(11,12,14,15,13)(16,19,20,17,18)(21,24,23,22,25)(26,29,30,28,27)(31,34,35,33,32)$ |
6A | $3^{7},2^{7}$ | $20$ | $6$ | $21$ | $( 1, 2, 4)( 3, 5)( 6, 9, 7)( 8,10)(11,13,15)(12,14)(16,18)(17,20,19)(21,23,24)(22,25)(26,29)(27,28,30)(31,32)(33,35,34)$ |
6B1 | $6^{2},3^{6},2,1^{3}$ | $70$ | $6$ | $23$ | $( 1,28,24)( 2,30,21)( 3,27,25, 4,29,23)( 5,26,22)( 6,15,34)( 7,13,35)( 8,11,31, 9,14,33)(10,12,32)(16,17)$ |
6B-1 | $6^{2},3^{6},2,1^{3}$ | $70$ | $6$ | $23$ | $( 1,24,28)( 2,21,30)( 3,23,29, 4,25,27)( 5,22,26)( 6,34,15)( 7,35,13)( 8,33,14, 9,31,11)(10,32,12)(16,17)$ |
6C1 | $6^{4},3^{2},2^{2},1$ | $105$ | $6$ | $26$ | $( 1,15,20, 2,13,19)( 3,12,16, 5,14,18)( 4,11,17)( 6,35,30, 7,34,28)( 8,32,29,10,31,26)( 9,33,27)(21,24)(22,25)$ |
6C-1 | $6^{4},3^{2},2^{2},1$ | $105$ | $6$ | $26$ | $( 1,19,13, 2,20,15)( 3,18,14, 5,16,12)( 4,17,11)( 6,28,34, 7,30,35)( 8,26,31,10,29,32)( 9,27,33)(21,24)(22,25)$ |
6D1 | $6^{2},3^{7},2$ | $140$ | $6$ | $25$ | $( 1,17, 6)( 2,20, 9)( 3,18, 8, 5,16,10)( 4,19, 7)(11,21,28)(12,25,26,14,22,29)(13,23,30)(15,24,27)(31,32)(33,34,35)$ |
6D-1 | $6^{2},3^{7},2$ | $140$ | $6$ | $25$ | $( 1, 6,17)( 2, 9,20)( 3,10,16, 5, 8,18)( 4, 7,19)(11,28,21)(12,29,22,14,26,25)(13,30,23)(15,27,24)(31,32)(33,35,34)$ |
7A1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,35,28,24,20,13, 7)( 2,34,30,21,19,15, 6)( 3,31,29,25,16,14, 8)( 4,33,27,23,17,11, 9)( 5,32,26,22,18,12,10)$ |
7A-1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,13,24,35, 7,20,28)( 2,15,21,34, 6,19,30)( 3,14,25,31, 8,16,29)( 4,11,23,33, 9,17,27)( 5,12,22,32,10,18,26)$ |
12A1 | $12^{2},4,3^{2},1$ | $210$ | $12$ | $29$ | $( 1,16,15, 5,20,14, 2,18,13, 3,19,12)( 4,17,11)( 6,26,35, 8,30,32, 7,29,34,10,28,31)( 9,27,33)(21,22,24,25)$ |
12A-1 | $12^{2},4,3^{2},1$ | $210$ | $12$ | $29$ | $( 1,14,19, 5,13,16, 2,12,20, 3,15,18)( 4,11,17)( 6,32,28, 8,34,26, 7,31,30,10,35,29)( 9,33,27)(21,22,24,25)$ |
14A1 | $14,7^{3}$ | $30$ | $14$ | $31$ | $( 1,20,35,13,28, 7,24)( 2,19,34,15,30, 6,21)( 3,18,31,12,29,10,25, 5,16,32,14,26, 8,22)( 4,17,33,11,27, 9,23)$ |
14A-1 | $14,7^{3}$ | $30$ | $14$ | $31$ | $( 1, 7,13,20,24,28,35)( 2, 6,15,19,21,30,34)( 3,10,14,18,25,26,31, 5, 8,12,16,22,29,32)( 4, 9,11,17,23,27,33)$ |
14B1 | $14^{2},7$ | $45$ | $14$ | $32$ | $( 1,30,20, 6,35,21,13, 2,28,19, 7,34,24,15)( 3,27,16, 9,31,23,14, 4,29,17, 8,33,25,11)( 5,26,18,10,32,22,12)$ |
14B-1 | $14^{2},7$ | $45$ | $14$ | $32$ | $( 1,21, 7,30,13,34,20, 2,24, 6,28,15,35,19)( 3,23, 8,27,14,33,16, 4,25, 9,29,11,31,17)( 5,22,10,26,12,32,18)$ |
15A1 | $15^{2},5$ | $168$ | $15$ | $32$ | $( 1,32,21, 4,31,24, 5,34,23, 3,35,22, 2,33,25)( 6, 9, 8, 7,10)(11,16,28,12,19,27,14,20,26,15,17,29,13,18,30)$ |
15A-1 | $15^{2},5$ | $168$ | $15$ | $32$ | $( 1,21,31, 5,23,35, 2,25,32, 4,24,34, 3,22,33)( 6, 8,10, 9, 7)(11,28,19,14,26,17,13,30,16,12,27,20,15,29,18)$ |
21A1 | $21,7^{2}$ | $60$ | $21$ | $32$ | $( 1, 6,11,20,21,27,35, 2, 9,13,19,23,28,34, 4, 7,15,17,24,30,33)( 3, 8,14,16,25,29,31)( 5,10,12,18,22,26,32)$ |
21A-1 | $21,7^{2}$ | $60$ | $21$ | $32$ | $( 1,17,34,13,27, 6,24, 4,19,35,11,30, 7,23, 2,20,33,15,28, 9,21)( 3,16,31,14,29, 8,25)( 5,18,32,12,26,10,22)$ |
28A1 | $28,7$ | $90$ | $28$ | $33$ | $( 1,29,19,10,35,25,15, 5,28,16, 6,32,24,14, 2,26,20, 8,34,22,13, 3,30,18, 7,31,21,12)( 4,27,17, 9,33,23,11)$ |
28A-1 | $28,7$ | $90$ | $28$ | $33$ | $( 1,10,15,16,24,26,34, 3, 7,12,19,25,28,32, 2, 8,13,18,21,29,35, 5, 6,14,20,22,30,31)( 4, 9,11,17,23,27,33)$ |
35A1 | $35$ | $72$ | $35$ | $34$ | $( 1,15,23,32, 8,20,30, 4,12,25,35, 6,17,26, 3,13,21,33,10,16,28, 2,11,22,31, 7,19,27, 5,14,24,34, 9,18,29)$ |
35A-1 | $35$ | $72$ | $35$ | $34$ | $( 1,17,31,15,26, 7,23, 3,19,32,13,27, 8,21, 5,20,33,14,30,10,24, 4,16,34,12,28, 9,25, 2,18,35,11,29, 6,22)$ |
42A1 | $21,14$ | $60$ | $42$ | $33$ | $( 1,23, 6,28,11,34,20, 4,21, 7,27,15,35,17, 2,24, 9,30,13,33,19)( 3,22, 8,26,14,32,16, 5,25,10,29,12,31,18)$ |
42A-1 | $21,14$ | $60$ | $42$ | $33$ | $( 1,30,17, 7,34,23,13, 2,27,20, 6,33,24,15, 4,28,19, 9,35,21,11)( 3,26,16,10,31,22,14, 5,29,18, 8,32,25,12)$ |
Malle's constant $a(G)$: $1/7$
magma: ConjugacyClasses(G);
Character table
35 x 35 character tablemagma: CharacterTable(G);
Regular extensions
Data not computed