Show commands: Magma
Group invariants
Abstract group: | $C_7:\GL(2,4)$ |
| |
Order: | $1260=2^{2} \cdot 3^{2} \cdot 5 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $35$ |
| |
Transitive number $t$: | $22$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,15,24,34,7,19,28,2,13,21,35,6,20,30)(3,11,25,33,8,17,29,4,14,23,31,9,16,27)(5,12,22,32,10,18,26)$, $(1,28,24)(2,26,25)(3,30,22)(4,27,23)(5,29,21)(6,12,31)(7,13,35)(8,15,32)(9,11,33)(10,14,34)(16,19,18)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $21$: $C_7:C_3$ $60$: $A_5$ $180$: $\GL(2,4)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $A_5$
Degree 7: $C_7:C_3$
Low degree siblings
42T197Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14},1^{7}$ | $15$ | $2$ | $14$ | $( 1, 4)( 2, 5)( 6,10)( 7, 9)(11,13)(12,15)(17,20)(18,19)(21,22)(23,24)(26,30)(27,28)(32,34)(33,35)$ |
3A1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,24,35)( 2,21,34)( 3,25,31)( 4,23,33)( 5,22,32)(11,27,17)(12,26,18)(13,28,20)(14,29,16)(15,30,19)$ |
3A-1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,35,24)( 2,34,21)( 3,31,25)( 4,33,23)( 5,32,22)(11,17,27)(12,18,26)(13,20,28)(14,16,29)(15,19,30)$ |
3B | $3^{7},1^{14}$ | $20$ | $3$ | $14$ | $( 1, 4, 3)( 7, 9, 8)(11,14,13)(16,20,17)(23,25,24)(27,29,28)(31,35,33)$ |
3C1 | $3^{11},1^{2}$ | $140$ | $3$ | $22$ | $( 3, 4, 5)( 6,21,15)( 7,24,13)( 8,23,12)( 9,22,14)(10,25,11)(16,27,32)(17,26,31)(18,29,33)(19,30,34)(20,28,35)$ |
3C-1 | $3^{11},1^{2}$ | $140$ | $3$ | $22$ | $( 3, 5, 4)( 6,15,21)( 7,13,24)( 8,12,23)( 9,14,22)(10,11,25)(16,32,27)(17,31,26)(18,33,29)(19,34,30)(20,35,28)$ |
5A1 | $5^{7}$ | $12$ | $5$ | $28$ | $( 1, 5, 3, 4, 2)( 6, 7,10, 8, 9)(11,15,13,12,14)(16,17,19,20,18)(21,24,22,25,23)(26,29,27,30,28)(31,33,34,35,32)$ |
5A2 | $5^{7}$ | $12$ | $5$ | $28$ | $( 1, 3, 2, 5, 4)( 6,10, 9, 7, 8)(11,13,14,15,12)(16,19,18,17,20)(21,22,23,24,25)(26,27,28,29,30)(31,34,32,33,35)$ |
6A1 | $6^{4},3^{2},2^{2},1$ | $105$ | $6$ | $26$ | $( 1,33,24, 4,35,23)( 2,32,21, 5,34,22)( 3,31,25)( 6,10)( 7, 9)(11,20,27,13,17,28)(12,19,26,15,18,30)(14,16,29)$ |
6A-1 | $6^{4},3^{2},2^{2},1$ | $105$ | $6$ | $26$ | $( 1,23,35, 4,24,33)( 2,22,34, 5,21,32)( 3,25,31)( 6,10)( 7, 9)(11,28,17,13,27,20)(12,30,18,15,26,19)(14,29,16)$ |
7A1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1, 7,13,20,24,28,35)( 2, 6,15,19,21,30,34)( 3, 8,14,16,25,29,31)( 4, 9,11,17,23,27,33)( 5,10,12,18,22,26,32)$ |
7A-1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,35,28,24,20,13, 7)( 2,34,30,21,19,15, 6)( 3,31,29,25,16,14, 8)( 4,33,27,23,17,11, 9)( 5,32,26,22,18,12,10)$ |
14A1 | $14^{2},7$ | $45$ | $14$ | $32$ | $( 1,21, 7,30,13,34,20, 2,24, 6,28,15,35,19)( 3,23, 8,27,14,33,16, 4,25, 9,29,11,31,17)( 5,22,10,26,12,32,18)$ |
14A-1 | $14^{2},7$ | $45$ | $14$ | $32$ | $( 1,19,35,15,28, 6,24, 2,20,34,13,30, 7,21)( 3,17,31,11,29, 9,25, 4,16,33,14,27, 8,23)( 5,18,32,12,26,10,22)$ |
15A1 | $15^{2},5$ | $84$ | $15$ | $32$ | $( 1,29, 9, 5,30, 7, 3,27,10, 2,28, 8, 4,26, 6)(11,12,15,13,14)(16,23,32,19,24,31,17,22,34,20,25,33,18,21,35)$ |
15A-1 | $15^{2},5$ | $84$ | $15$ | $32$ | $( 1, 6,26, 4, 8,28, 2,10,27, 3, 7,30, 5, 9,29)(11,14,13,15,12)(16,35,21,18,33,25,20,34,22,17,31,24,19,32,23)$ |
15A2 | $15^{2},5$ | $84$ | $15$ | $32$ | $( 1, 9,30, 3,10,28, 4, 6,29, 5, 7,27, 2, 8,26)(11,15,14,12,13)(16,32,24,17,34,25,18,35,23,19,31,22,20,33,21)$ |
15A-2 | $15^{2},5$ | $84$ | $15$ | $32$ | $( 1,26, 8, 2,27, 7, 5,29, 6, 4,28,10, 3,30, 9)(11,13,12,14,15)(16,21,33,20,22,31,19,23,35,18,25,34,17,24,32)$ |
21A1 | $21,7^{2}$ | $60$ | $21$ | $32$ | $( 1, 9,14,20,23,29,35, 4, 8,13,17,25,28,33, 3, 7,11,16,24,27,31)( 2, 6,15,19,21,30,34)( 5,10,12,18,22,26,32)$ |
21A-1 | $21,7^{2}$ | $60$ | $21$ | $32$ | $( 1,31,27,24,16,11, 7, 3,33,28,25,17,13, 8, 4,35,29,23,20,14, 9)( 2,34,30,21,19,15, 6)( 5,32,26,22,18,12,10)$ |
35A1 | $35$ | $36$ | $35$ | $34$ | $( 1, 9,12,19,25,28,33, 5, 6,14,20,23,26,34, 3, 7,11,18,21,29,35, 4,10,15,16,24,27,32, 2, 8,13,17,22,30,31)$ |
35A-1 | $35$ | $36$ | $35$ | $34$ | $( 1,31,30,22,17,13, 8, 2,32,27,24,16,15,10, 4,35,29,21,18,11, 7, 3,34,26,23,20,14, 6, 5,33,28,25,19,12, 9)$ |
35A2 | $35$ | $36$ | $35$ | $34$ | $( 1,12,25,33, 6,20,26, 3,11,21,35,10,16,27, 2,13,22,31, 9,19,28, 5,14,23,34, 7,18,29, 4,15,24,32, 8,17,30)$ |
35A-2 | $35$ | $36$ | $35$ | $34$ | $( 1,30,17, 8,32,24,15, 4,29,18, 7,34,23,14, 5,28,19, 9,31,22,13, 2,27,16,10,35,21,11, 3,26,20, 6,33,25,12)$ |
Malle's constant $a(G)$: $1/14$
Character table
1A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 5A1 | 5A2 | 6A1 | 6A-1 | 7A1 | 7A-1 | 14A1 | 14A-1 | 15A1 | 15A-1 | 15A2 | 15A-2 | 21A1 | 21A-1 | 35A1 | 35A-1 | 35A2 | 35A-2 | ||
Size | 1 | 15 | 7 | 7 | 20 | 140 | 140 | 12 | 12 | 105 | 105 | 3 | 3 | 45 | 45 | 84 | 84 | 84 | 84 | 60 | 60 | 36 | 36 | 36 | 36 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 5A2 | 5A1 | 3A1 | 3A-1 | 7A1 | 7A-1 | 7A1 | 7A-1 | 15A2 | 15A-2 | 15A1 | 15A-1 | 21A1 | 21A-1 | 35A2 | 35A-2 | 35A1 | 35A-1 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 5A2 | 5A1 | 2A | 2A | 7A-1 | 7A1 | 14A-1 | 14A1 | 5A2 | 5A2 | 5A1 | 5A1 | 7A-1 | 7A1 | 35A-2 | 35A2 | 35A-1 | 35A1 | |
5 P | 1A | 2A | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 1A | 1A | 6A-1 | 6A1 | 7A-1 | 7A1 | 14A-1 | 14A1 | 3A1 | 3A-1 | 3A-1 | 3A1 | 21A-1 | 21A1 | 7A-1 | 7A1 | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 5A2 | 5A1 | 6A1 | 6A-1 | 1A | 1A | 2A | 2A | 15A-2 | 15A2 | 15A-1 | 15A1 | 3B | 3B | 5A1 | 5A1 | 5A2 | 5A2 | |
Type | ||||||||||||||||||||||||||
1260.61.1a | R | |||||||||||||||||||||||||
1260.61.1b1 | C | |||||||||||||||||||||||||
1260.61.1b2 | C | |||||||||||||||||||||||||
1260.61.3a1 | C | |||||||||||||||||||||||||
1260.61.3a2 | C | |||||||||||||||||||||||||
1260.61.3b1 | R | |||||||||||||||||||||||||
1260.61.3b2 | R | |||||||||||||||||||||||||
1260.61.3c1 | C | |||||||||||||||||||||||||
1260.61.3c2 | C | |||||||||||||||||||||||||
1260.61.3c3 | C | |||||||||||||||||||||||||
1260.61.3c4 | C | |||||||||||||||||||||||||
1260.61.4a | R | |||||||||||||||||||||||||
1260.61.4b1 | C | |||||||||||||||||||||||||
1260.61.4b2 | C | |||||||||||||||||||||||||
1260.61.5a | R | |||||||||||||||||||||||||
1260.61.5b1 | C | |||||||||||||||||||||||||
1260.61.5b2 | C | |||||||||||||||||||||||||
1260.61.9a1 | C | |||||||||||||||||||||||||
1260.61.9a2 | C | |||||||||||||||||||||||||
1260.61.9a3 | C | |||||||||||||||||||||||||
1260.61.9a4 | C | |||||||||||||||||||||||||
1260.61.12a1 | C | |||||||||||||||||||||||||
1260.61.12a2 | C | |||||||||||||||||||||||||
1260.61.15a1 | C | |||||||||||||||||||||||||
1260.61.15a2 | C |
Regular extensions
Data not computed