Show commands:
Magma
magma: G := TransitiveGroup(35, 22);
Group invariants
Abstract group: | $C_7:\GL(2,4)$ | magma: IdentifyGroup(G);
| |
Order: | $1260=2^{2} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $35$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $22$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,15,24,34,7,19,28,2,13,21,35,6,20,30)(3,11,25,33,8,17,29,4,14,23,31,9,16,27)(5,12,22,32,10,18,26)$, $(1,28,24)(2,26,25)(3,30,22)(4,27,23)(5,29,21)(6,12,31)(7,13,35)(8,15,32)(9,11,33)(10,14,34)(16,19,18)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ $21$: $C_7:C_3$ $60$: $A_5$ $180$: $\GL(2,4)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 5: $A_5$
Degree 7: $C_7:C_3$
Low degree siblings
42T197Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{35}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{14},1^{7}$ | $15$ | $2$ | $14$ | $( 1, 4)( 2, 5)( 6,10)( 7, 9)(11,13)(12,15)(17,20)(18,19)(21,22)(23,24)(26,30)(27,28)(32,34)(33,35)$ |
3A1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,28,24)( 2,30,21)( 3,29,25)( 4,27,23)( 5,26,22)( 6,15,34)( 7,13,35)( 8,14,31)( 9,11,33)(10,12,32)$ |
3A-1 | $3^{10},1^{5}$ | $7$ | $3$ | $20$ | $( 1,24,28)( 2,21,30)( 3,25,29)( 4,23,27)( 5,22,26)( 6,34,15)( 7,35,13)( 8,31,14)( 9,33,11)(10,32,12)$ |
3B | $3^{7},1^{14}$ | $20$ | $3$ | $14$ | $( 1, 5, 3)( 7,10, 8)(12,14,13)(16,20,18)(22,25,24)(26,29,28)(31,35,32)$ |
3C1 | $3^{11},1^{2}$ | $140$ | $3$ | $22$ | $( 1,20, 7)( 2,17, 8)( 3,19, 9)( 4,16, 6)( 5,18,10)(11,25,30)(12,22,26)(13,24,28)(14,21,27)(15,23,29)(31,34,33)$ |
3C-1 | $3^{11},1^{2}$ | $140$ | $3$ | $22$ | $( 1, 7,20)( 2, 8,17)( 3, 9,19)( 4, 6,16)( 5,10,18)(11,30,25)(12,26,22)(13,28,24)(14,27,21)(15,29,23)(31,33,34)$ |
5A1 | $5^{7}$ | $12$ | $5$ | $28$ | $( 1, 5, 3, 4, 2)( 6, 7,10, 8, 9)(11,15,13,12,14)(16,17,19,20,18)(21,24,22,25,23)(26,29,27,30,28)(31,33,34,35,32)$ |
5A2 | $5^{7}$ | $12$ | $5$ | $28$ | $( 1, 4, 5, 2, 3)( 6, 8, 7, 9,10)(11,12,15,14,13)(16,20,17,18,19)(21,25,24,23,22)(26,30,29,28,27)(31,35,33,32,34)$ |
6A1 | $6^{4},3^{2},2^{2},1$ | $105$ | $6$ | $26$ | $( 1, 9,20, 4, 7,17)( 2,10,19, 5, 6,18)( 3, 8,16)(11,28,23,13,27,24)(12,30,22,15,26,21)(14,29,25)(32,34)(33,35)$ |
6A-1 | $6^{4},3^{2},2^{2},1$ | $105$ | $6$ | $26$ | $( 1,17, 7, 4,20, 9)( 2,18, 6, 5,19,10)( 3,16, 8)(11,24,27,13,23,28)(12,21,26,15,22,30)(14,25,29)(32,34)(33,35)$ |
7A1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,13,24,35, 7,20,28)( 2,15,21,34, 6,19,30)( 3,14,25,31, 8,16,29)( 4,11,23,33, 9,17,27)( 5,12,22,32,10,18,26)$ |
7A-1 | $7^{5}$ | $3$ | $7$ | $30$ | $( 1,35,28,24,20,13, 7)( 2,34,30,21,19,15, 6)( 3,31,29,25,16,14, 8)( 4,33,27,23,17,11, 9)( 5,32,26,22,18,12,10)$ |
14A1 | $14^{2},7$ | $45$ | $14$ | $32$ | $( 1,15,24,34, 7,19,28, 2,13,21,35, 6,20,30)( 3,12,25,32, 8,18,29, 5,14,22,31,10,16,26)( 4,11,23,33, 9,17,27)$ |
14A-1 | $14^{2},7$ | $45$ | $14$ | $32$ | $( 1,19,35,15,28, 6,24, 2,20,34,13,30, 7,21)( 3,18,31,12,29,10,25, 5,16,32,14,26, 8,22)( 4,17,33,11,27, 9,23)$ |
15A1 | $15^{2},5$ | $84$ | $15$ | $32$ | $( 1,22,29, 4,21,28, 5,25,27, 2,24,26, 3,23,30)( 6,35,12, 8,33,15, 7,32,14, 9,34,13,10,31,11)(16,17,19,20,18)$ |
15A-1 | $15^{2},5$ | $84$ | $15$ | $32$ | $( 1,25,30, 5,23,28, 3,21,26, 4,24,29, 2,22,27)( 6,32,11, 7,31,15,10,33,13, 8,34,12, 9,35,14)(16,19,18,17,20)$ |
15A2 | $15^{2},5$ | $84$ | $15$ | $32$ | $( 1,26,25, 4,30,24, 5,29,23, 2,28,22, 3,27,21)( 6,13,32, 8,11,34, 7,12,31, 9,15,35,10,14,33)(16,17,19,20,18)$ |
15A-2 | $15^{2},5$ | $84$ | $15$ | $32$ | $( 1,29,21, 5,27,24, 3,30,22, 4,28,25, 2,26,23)( 6,12,33, 7,14,34,10,11,35, 8,15,32, 9,13,31)(16,19,18,17,20)$ |
21A1 | $21,7^{2}$ | $60$ | $21$ | $32$ | $( 1, 8,12,20,25,26,35, 3,10,13,16,22,28,31, 5, 7,14,18,24,29,32)( 2, 6,15,19,21,30,34)( 4, 9,11,17,23,27,33)$ |
21A-1 | $21,7^{2}$ | $60$ | $21$ | $32$ | $( 1,18,31,13,26, 8,24, 5,16,35,12,29, 7,22, 3,20,32,14,28,10,25)( 2,19,34,15,30, 6,21)( 4,17,33,11,27, 9,23)$ |
35A1 | $35$ | $36$ | $35$ | $34$ | $( 1,26,19, 8,33,24,12, 2,29,17, 7,32,21,14, 4,28,18, 6,31,23,13, 5,30,16, 9,35,22,15, 3,27,20,10,34,25,11)$ |
35A-1 | $35$ | $36$ | $35$ | $34$ | $( 1, 8,12,17,21,28,31, 5, 9,15,20,25,26,33, 2, 7,14,18,23,30,35, 3,10,11,19,24,29,32, 4, 6,13,16,22,27,34)$ |
35A2 | $35$ | $36$ | $35$ | $34$ | $( 1,23, 8,30,12,35,17, 3,21,10,28,11,31,19, 5,24, 9,29,15,32,20, 4,25, 6,26,13,33,16, 2,22, 7,27,14,34,18)$ |
35A-2 | $35$ | $36$ | $35$ | $34$ | $( 1,31,26,23,19,13, 8, 5,33,30,24,16,12, 9, 2,35,29,22,17,15, 7, 3,32,27,21,20,14,10, 4,34,28,25,18,11, 6)$ |
Malle's constant $a(G)$: $1/14$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 5A1 | 5A2 | 6A1 | 6A-1 | 7A1 | 7A-1 | 14A1 | 14A-1 | 15A1 | 15A-1 | 15A2 | 15A-2 | 21A1 | 21A-1 | 35A1 | 35A-1 | 35A2 | 35A-2 | ||
Size | 1 | 15 | 7 | 7 | 20 | 140 | 140 | 12 | 12 | 105 | 105 | 3 | 3 | 45 | 45 | 84 | 84 | 84 | 84 | 60 | 60 | 36 | 36 | 36 | 36 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 5A2 | 5A1 | 3A1 | 3A-1 | 7A1 | 7A-1 | 7A1 | 7A-1 | 15A2 | 15A-1 | 15A-2 | 15A1 | 21A1 | 21A-1 | 35A-1 | 35A2 | 35A1 | 35A-2 | |
3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 5A2 | 5A1 | 2A | 2A | 7A-1 | 7A1 | 14A-1 | 14A1 | 5A2 | 5A1 | 5A2 | 5A1 | 7A-1 | 7A1 | 35A1 | 35A-2 | 35A-1 | 35A2 | |
5 P | 1A | 2A | 3A-1 | 3A1 | 3B | 3C-1 | 3C1 | 1A | 1A | 6A-1 | 6A1 | 7A-1 | 7A1 | 14A-1 | 14A1 | 3A1 | 3A1 | 3A-1 | 3A-1 | 21A-1 | 21A1 | 7A1 | 7A-1 | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A1 | 3A-1 | 3B | 3C1 | 3C-1 | 5A2 | 5A1 | 6A1 | 6A-1 | 1A | 1A | 2A | 2A | 15A-2 | 15A1 | 15A2 | 15A-1 | 3B | 3B | 5A2 | 5A1 | 5A2 | 5A1 | |
Type | ||||||||||||||||||||||||||
1260.61.1a | R | |||||||||||||||||||||||||
1260.61.1b1 | C | |||||||||||||||||||||||||
1260.61.1b2 | C | |||||||||||||||||||||||||
1260.61.3a1 | C | |||||||||||||||||||||||||
1260.61.3a2 | C | |||||||||||||||||||||||||
1260.61.3b1 | R | |||||||||||||||||||||||||
1260.61.3b2 | R | |||||||||||||||||||||||||
1260.61.3c1 | C | |||||||||||||||||||||||||
1260.61.3c2 | C | |||||||||||||||||||||||||
1260.61.3c3 | C | |||||||||||||||||||||||||
1260.61.3c4 | C | |||||||||||||||||||||||||
1260.61.4a | R | |||||||||||||||||||||||||
1260.61.4b1 | C | |||||||||||||||||||||||||
1260.61.4b2 | C | |||||||||||||||||||||||||
1260.61.5a | R | |||||||||||||||||||||||||
1260.61.5b1 | C | |||||||||||||||||||||||||
1260.61.5b2 | C | |||||||||||||||||||||||||
1260.61.9a1 | C | |||||||||||||||||||||||||
1260.61.9a2 | C | |||||||||||||||||||||||||
1260.61.9a3 | C | |||||||||||||||||||||||||
1260.61.9a4 | C | |||||||||||||||||||||||||
1260.61.12a1 | C | |||||||||||||||||||||||||
1260.61.12a2 | C | |||||||||||||||||||||||||
1260.61.15a1 | C | |||||||||||||||||||||||||
1260.61.15a2 | C |
magma: CharacterTable(G);
Regular extensions
Data not computed