Properties

Label 30T27
30T27 1 11 1->11 17 1->17 2 12 2->12 18 2->18 3 3->2 29 3->29 4 4->1 30 4->30 5 6 5->6 23 5->23 24 6->24 7 7->4 25 7->25 8 8->3 26 8->26 9 19 9->19 9->30 10 20 10->20 10->29 13 11->13 16 11->16 14 12->14 15 12->15 22 13->22 28 13->28 21 14->21 27 14->27 15->9 15->21 16->10 16->22 17->7 17->18 18->8 19->10 19->13 20->9 20->14 21->7 21->23 22->8 22->24 23->3 23->20 24->4 24->19 25->15 25->27 26->16 26->28 27->2 27->26 28->1 28->25 29->5 29->11 30->6 30->12
Degree $30$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $S_5$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(30, 27);
 

Group invariants

Abstract group:  $S_5$
Copy content magma:IdentifyGroup(G);
 
Order:  $120=2^{3} \cdot 3 \cdot 5$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  no
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $30$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $27$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,17,7,4)(2,18,8,3)(5,6)(9,30,12,15)(10,29,11,16)(13,22,24,19)(14,21,23,20)(25,27,26,28)$, $(1,11,13,28)(2,12,14,27)(3,29,5,23)(4,30,6,24)(7,25,15,21)(8,26,16,22)(9,19,10,20)(17,18)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 5: $S_5$

Degree 6: None

Degree 10: $S_5$

Degree 15: $S_5$

Low degree siblings

5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 40T62

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{30}$ $1$ $1$ $0$ $()$
2A $2^{12},1^{6}$ $10$ $2$ $12$ $( 1, 7)( 2, 8)( 9,19)(10,20)(11,21)(12,22)(13,15)(14,16)(23,29)(24,30)(25,28)(26,27)$
2B $2^{14},1^{2}$ $15$ $2$ $14$ $( 1, 2)( 3,13)( 4,14)( 5, 9)( 6,10)( 7,22)( 8,21)(11,30)(12,29)(17,26)(18,25)(19,28)(20,27)(23,24)$
3A $3^{10}$ $20$ $3$ $20$ $( 1,15,24)( 2,16,23)( 3,18, 5)( 4,17, 6)( 7,13,30)( 8,14,29)( 9,27,11)(10,28,12)(19,26,21)(20,25,22)$
4A $4^{7},2$ $30$ $4$ $22$ $( 1,23, 2,24)( 3,20,13,27)( 4,19,14,28)( 5,11, 9,30)( 6,12,10,29)( 7,25,22,18)( 8,26,21,17)(15,16)$
5A $5^{6}$ $24$ $5$ $24$ $( 1,27,17,12,13)( 2,28,18,11,14)( 3, 7,16, 6,19)( 4, 8,15, 5,20)( 9,21,30,23,26)(10,22,29,24,25)$
6A $6^{4},3^{2}$ $20$ $6$ $24$ $( 1,30,15, 7,24,13)( 2,29,16, 8,23,14)( 3, 5,18)( 4, 6,17)( 9,21,27,19,11,26)(10,22,28,20,12,25)$

Malle's constant $a(G)$:     $1/12$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 3A 4A 5A 6A
Size 1 10 15 20 30 24 20
2 P 1A 1A 1A 3A 2B 5A 3A
3 P 1A 2A 2B 1A 4A 5A 2A
5 P 1A 2A 2B 3A 4A 1A 6A
Type
120.34.1a R 1 1 1 1 1 1 1
120.34.1b R 1 1 1 1 1 1 1
120.34.4a R 4 2 0 1 0 1 1
120.34.4b R 4 2 0 1 0 1 1
120.34.5a R 5 1 1 1 1 0 1
120.34.5b R 5 1 1 1 1 0 1
120.34.6a R 6 0 2 0 0 1 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed