Show commands:
Magma
magma: G := TransitiveGroup(26, 48);
Group invariants
Abstract group: | $\GL(3,3)$ | magma: IdentifyGroup(G);
| |
Order: | $11232=2^{5} \cdot 3^{3} \cdot 13$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $48$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,2)(3,23,19,22,8,14)(4,24,20,21,7,13)(5,6)(9,12,16,10,11,15)(17,25)(18,26)$, $(1,15,24,12,25,6,19,17,13,10,3,7,21,2,16,23,11,26,5,20,18,14,9,4,8,22)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5616$: $\PSL(3,3)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: $\PSL(3,3)$
Low degree siblings
26T47 x 2, 26T48Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $1$ | $2$ | $13$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)$ |
2B | $2^{8},1^{10}$ | $117$ | $2$ | $8$ | $( 1, 8)( 2, 7)( 9,21)(10,22)(11,18)(12,17)(23,26)(24,25)$ |
2C | $2^{13}$ | $117$ | $2$ | $13$ | $( 1, 7)( 2, 8)( 3, 4)( 5, 6)( 9,10)(11,26)(12,25)(13,15)(14,16)(17,24)(18,23)(19,20)(21,22)$ |
3A | $3^{6},1^{8}$ | $104$ | $3$ | $12$ | $( 5, 9,21)( 6,10,22)(11,13,18)(12,14,17)(15,23,26)(16,24,25)$ |
3B | $3^{8},1^{2}$ | $624$ | $3$ | $16$ | $( 1,25,13)( 2,26,14)( 5, 9,21)( 6,10,22)( 7,23,17)( 8,24,18)(11,19,16)(12,20,15)$ |
4A | $4^{4},2^{4},1^{2}$ | $702$ | $4$ | $16$ | $( 1,16, 8,13)( 2,15, 7,14)( 3, 5)( 4, 6)( 9,21)(10,22)(11,18,25,24)(12,17,26,23)$ |
4B | $4^{4},2^{5}$ | $702$ | $4$ | $17$ | $( 1,14, 8,15)( 2,13, 7,16)( 3, 6)( 4, 5)( 9,22)(10,21)(11,23,25,17)(12,24,26,18)(19,20)$ |
6A | $6^{3},2^{4}$ | $104$ | $6$ | $19$ | $( 1, 2)( 3, 4)( 5,22, 9, 6,21,10)( 7, 8)(11,17,13,12,18,14)(15,25,23,16,26,24)(19,20)$ |
6B | $6^{4},2$ | $624$ | $6$ | $21$ | $( 1,17,16, 2,18,15)( 3, 4)( 5,22, 9, 6,21,10)( 7,11,26, 8,12,25)(13,23,19,14,24,20)$ |
6C | $6^{3},2^{4}$ | $936$ | $6$ | $19$ | $( 1, 7)( 2, 8)( 3, 4)( 5,10,21, 6, 9,22)(11,15,18,26,13,23)(12,16,17,25,14,24)(19,20)$ |
6D | $6^{2},3^{2},2^{2},1^{4}$ | $936$ | $6$ | $16$ | $( 1,11,25, 8,18,24)( 2,12,26, 7,17,23)( 9,21)(10,22)(13,16,19)(14,15,20)$ |
8A1 | $8^{2},4^{2},1^{2}$ | $702$ | $8$ | $20$ | $( 1,24,11,13, 8,18,25,16)( 2,23,12,14, 7,17,26,15)( 3, 9,21, 5)( 4,10,22, 6)$ |
8A-1 | $8^{2},4^{2},1^{2}$ | $702$ | $8$ | $20$ | $( 1,25,24,13, 8,11,18,16)( 2,26,23,14, 7,12,17,15)( 3,21, 9, 5)( 4,22,10, 6)$ |
8B1 | $8^{2},4^{2},2$ | $702$ | $8$ | $21$ | $( 1,12,24,15, 8,26,18,14)( 2,11,23,16, 7,25,17,13)( 3,22, 9, 6)( 4,21,10, 5)(19,20)$ |
8B-1 | $8^{2},4^{2},2$ | $702$ | $8$ | $21$ | $( 1,17,11,15, 8,23,25,14)( 2,18,12,16, 7,24,26,13)( 3,10,21, 6)( 4, 9,22, 5)(19,20)$ |
13A1 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1, 8,11,13,21,16, 9,25,19, 5, 3,24,18)( 2, 7,12,14,22,15,10,26,20, 6, 4,23,17)$ |
13A-1 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,25,24,19, 5, 3,18,16, 9,13,21,11, 8)( 2,26,23,20, 6, 4,17,15,10,14,22,12, 7)$ |
13A2 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,18,13,21, 8,25,11,24,16, 9,19, 5, 3)( 2,17,14,22, 7,26,12,23,15,10,20, 6, 4)$ |
13A-2 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,19, 5, 3,16, 9,24,11,18, 8,13,21,25)( 2,20, 6, 4,15,10,23,12,17, 7,14,22,26)$ |
26A1 | $26$ | $432$ | $26$ | $25$ | $( 1, 7,24,15, 9,14,21,17,19, 6, 3,12,25, 2, 8,23,16,10,13,22,18,20, 5, 4,11,26)$ |
26A-1 | $26$ | $432$ | $26$ | $25$ | $( 1,17,11,20, 5, 4,25,14,21,15, 9,23, 8, 2,18,12,19, 6, 3,26,13,22,16,10,24, 7)$ |
26A5 | $26$ | $432$ | $26$ | $25$ | $( 1,20, 5, 4,13,22,11,23,25, 7,16,10,18, 2,19, 6, 3,14,21,12,24,26, 8,15, 9,17)$ |
26A-5 | $26$ | $432$ | $26$ | $25$ | $( 1,26,16,10, 8,17,24,12,13,22,19, 6, 3, 2,25,15, 9, 7,18,23,11,14,21,20, 5, 4)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A1 | 8A-1 | 8B1 | 8B-1 | 13A1 | 13A-1 | 13A2 | 13A-2 | 26A1 | 26A-1 | 26A5 | 26A-5 | ||
Size | 1 | 1 | 117 | 117 | 104 | 624 | 702 | 702 | 104 | 624 | 936 | 936 | 702 | 702 | 702 | 702 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 3A | 3B | 3A | 3A | 4A | 4A | 4A | 4A | 13A1 | 13A-1 | 13A-2 | 13A2 | 13A1 | 13A-1 | 13A2 | 13A-2 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 4B | 2A | 2A | 2C | 2B | 8A1 | 8A-1 | 8B1 | 8B-1 | 13A-2 | 13A2 | 13A-1 | 13A1 | 26A1 | 26A-1 | 26A5 | 26A-5 | |
13 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A-1 | 8A1 | 8B-1 | 8B1 | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | |
Type |
magma: CharacterTable(G);
Regular extensions
Data not computed