Properties

Label 26T48
Degree $26$
Order $11232$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $\GL(3,3)$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(26, 48);
 

Group invariants

Abstract group:  $\GL(3,3)$
magma: IdentifyGroup(G);
 
Order:  $11232=2^{5} \cdot 3^{3} \cdot 13$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $26$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $48$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2)(3,23,19,22,8,14)(4,24,20,21,7,13)(5,6)(9,12,16,10,11,15)(17,25)(18,26)$, $(1,15,24,12,25,6,19,17,13,10,3,7,21,2,16,23,11,26,5,20,18,14,9,4,8,22)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$5616$:  $\PSL(3,3)$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 13: $\PSL(3,3)$

Low degree siblings

26T47 x 2, 26T48

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{26}$ $1$ $1$ $0$ $()$
2A $2^{13}$ $1$ $2$ $13$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)$
2B $2^{8},1^{10}$ $117$ $2$ $8$ $( 1, 8)( 2, 7)( 9,21)(10,22)(11,18)(12,17)(23,26)(24,25)$
2C $2^{13}$ $117$ $2$ $13$ $( 1, 7)( 2, 8)( 3, 4)( 5, 6)( 9,10)(11,26)(12,25)(13,15)(14,16)(17,24)(18,23)(19,20)(21,22)$
3A $3^{6},1^{8}$ $104$ $3$ $12$ $( 5, 9,21)( 6,10,22)(11,13,18)(12,14,17)(15,23,26)(16,24,25)$
3B $3^{8},1^{2}$ $624$ $3$ $16$ $( 1,25,13)( 2,26,14)( 5, 9,21)( 6,10,22)( 7,23,17)( 8,24,18)(11,19,16)(12,20,15)$
4A $4^{4},2^{4},1^{2}$ $702$ $4$ $16$ $( 1,16, 8,13)( 2,15, 7,14)( 3, 5)( 4, 6)( 9,21)(10,22)(11,18,25,24)(12,17,26,23)$
4B $4^{4},2^{5}$ $702$ $4$ $17$ $( 1,14, 8,15)( 2,13, 7,16)( 3, 6)( 4, 5)( 9,22)(10,21)(11,23,25,17)(12,24,26,18)(19,20)$
6A $6^{3},2^{4}$ $104$ $6$ $19$ $( 1, 2)( 3, 4)( 5,22, 9, 6,21,10)( 7, 8)(11,17,13,12,18,14)(15,25,23,16,26,24)(19,20)$
6B $6^{4},2$ $624$ $6$ $21$ $( 1,17,16, 2,18,15)( 3, 4)( 5,22, 9, 6,21,10)( 7,11,26, 8,12,25)(13,23,19,14,24,20)$
6C $6^{3},2^{4}$ $936$ $6$ $19$ $( 1, 7)( 2, 8)( 3, 4)( 5,10,21, 6, 9,22)(11,15,18,26,13,23)(12,16,17,25,14,24)(19,20)$
6D $6^{2},3^{2},2^{2},1^{4}$ $936$ $6$ $16$ $( 1,11,25, 8,18,24)( 2,12,26, 7,17,23)( 9,21)(10,22)(13,16,19)(14,15,20)$
8A1 $8^{2},4^{2},1^{2}$ $702$ $8$ $20$ $( 1,24,11,13, 8,18,25,16)( 2,23,12,14, 7,17,26,15)( 3, 9,21, 5)( 4,10,22, 6)$
8A-1 $8^{2},4^{2},1^{2}$ $702$ $8$ $20$ $( 1,25,24,13, 8,11,18,16)( 2,26,23,14, 7,12,17,15)( 3,21, 9, 5)( 4,22,10, 6)$
8B1 $8^{2},4^{2},2$ $702$ $8$ $21$ $( 1,12,24,15, 8,26,18,14)( 2,11,23,16, 7,25,17,13)( 3,22, 9, 6)( 4,21,10, 5)(19,20)$
8B-1 $8^{2},4^{2},2$ $702$ $8$ $21$ $( 1,17,11,15, 8,23,25,14)( 2,18,12,16, 7,24,26,13)( 3,10,21, 6)( 4, 9,22, 5)(19,20)$
13A1 $13^{2}$ $432$ $13$ $24$ $( 1, 8,11,13,21,16, 9,25,19, 5, 3,24,18)( 2, 7,12,14,22,15,10,26,20, 6, 4,23,17)$
13A-1 $13^{2}$ $432$ $13$ $24$ $( 1,25,24,19, 5, 3,18,16, 9,13,21,11, 8)( 2,26,23,20, 6, 4,17,15,10,14,22,12, 7)$
13A2 $13^{2}$ $432$ $13$ $24$ $( 1,18,13,21, 8,25,11,24,16, 9,19, 5, 3)( 2,17,14,22, 7,26,12,23,15,10,20, 6, 4)$
13A-2 $13^{2}$ $432$ $13$ $24$ $( 1,19, 5, 3,16, 9,24,11,18, 8,13,21,25)( 2,20, 6, 4,15,10,23,12,17, 7,14,22,26)$
26A1 $26$ $432$ $26$ $25$ $( 1, 7,24,15, 9,14,21,17,19, 6, 3,12,25, 2, 8,23,16,10,13,22,18,20, 5, 4,11,26)$
26A-1 $26$ $432$ $26$ $25$ $( 1,17,11,20, 5, 4,25,14,21,15, 9,23, 8, 2,18,12,19, 6, 3,26,13,22,16,10,24, 7)$
26A5 $26$ $432$ $26$ $25$ $( 1,20, 5, 4,13,22,11,23,25, 7,16,10,18, 2,19, 6, 3,14,21,12,24,26, 8,15, 9,17)$
26A-5 $26$ $432$ $26$ $25$ $( 1,26,16,10, 8,17,24,12,13,22,19, 6, 3, 2,25,15, 9, 7,18,23,11,14,21,20, 5, 4)$

Malle's constant $a(G)$:     $1/8$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 3A 3B 4A 4B 6A 6B 6C 6D 8A1 8A-1 8B1 8B-1 13A1 13A-1 13A2 13A-2 26A1 26A-1 26A5 26A-5
Size 1 1 117 117 104 624 702 702 104 624 936 936 702 702 702 702 432 432 432 432 432 432 432 432
2 P 1A 1A 1A 1A 3A 3B 2B 2B 3A 3B 3A 3A 4A 4A 4A 4A 13A1 13A-1 13A-2 13A2 13A1 13A-1 13A2 13A-2
3 P 1A 2A 2B 2C 1A 1A 4A 4B 2A 2A 2C 2B 8A1 8A-1 8B1 8B-1 13A-2 13A2 13A-1 13A1 26A1 26A-1 26A5 26A-5
13 P 1A 2A 2B 2C 3A 3B 4A 4B 6A 6B 6C 6D 8A-1 8A1 8B-1 8B1 1A 1A 1A 1A 2A 2A 2A 2A
Type

magma: CharacterTable(G);
 

Regular extensions

Data not computed