Show commands: Magma
Group invariants
Abstract group: | $\GL(3,3)$ |
| |
Order: | $11232=2^{5} \cdot 3^{3} \cdot 13$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $26$ |
| |
Transitive number $t$: | $48$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,2)(3,23,19,22,8,14)(4,24,20,21,7,13)(5,6)(9,12,16,10,11,15)(17,25)(18,26)$, $(1,15,24,12,25,6,19,17,13,10,3,7,21,2,16,23,11,26,5,20,18,14,9,4,8,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5616$: $\PSL(3,3)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: $\PSL(3,3)$
Low degree siblings
26T47 x 2, 26T48Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $1$ | $2$ | $13$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)$ |
2B | $2^{8},1^{10}$ | $117$ | $2$ | $8$ | $( 3, 8)( 4, 7)( 9,11)(10,12)(17,26)(18,25)(21,24)(22,23)$ |
2C | $2^{13}$ | $117$ | $2$ | $13$ | $( 1, 2)( 3,14)( 4,13)( 5, 6)( 7,24)( 8,23)( 9,15)(10,16)(11,12)(17,18)(19,22)(20,21)(25,26)$ |
3A | $3^{6},1^{8}$ | $104$ | $3$ | $12$ | $( 1, 3,19)( 2, 4,20)( 9,13,25)(10,14,26)(15,17,22)(16,18,21)$ |
3B | $3^{8},1^{2}$ | $624$ | $3$ | $16$ | $( 1,21,25)( 2,22,26)( 3,16, 9)( 4,15,10)( 5,24,11)( 6,23,12)(13,19,18)(14,20,17)$ |
4A | $4^{4},2^{4},1^{2}$ | $702$ | $4$ | $16$ | $( 3,25, 8,18)( 4,26, 7,17)( 5,19)( 6,20)( 9,21,11,24)(10,22,12,23)(13,16)(14,15)$ |
4B | $4^{4},2^{5}$ | $702$ | $4$ | $17$ | $( 1, 4,25,14)( 2, 3,26,13)( 5,12)( 6,11)( 7,24)( 8,23)( 9,22,19,15)(10,21,20,16)(17,18)$ |
6A | $6^{3},2^{4}$ | $104$ | $6$ | $19$ | $( 1,20, 3, 2,19, 4)( 5, 6)( 7, 8)( 9,26,13,10,25,14)(11,12)(15,21,17,16,22,18)(23,24)$ |
6B | $6^{4},2$ | $624$ | $6$ | $21$ | $( 1,26,21, 2,25,22)( 3,10,16, 4, 9,15)( 5,12,24, 6,11,23)( 7, 8)(13,17,19,14,18,20)$ |
6C | $6^{3},2^{4}$ | $936$ | $6$ | $19$ | $( 1,17,25, 2,18,26)( 3,20, 9,14,21,15)( 4,19,10,13,22,16)( 5, 6)( 7,24)( 8,23)(11,12)$ |
6D | $6^{2},3^{2},2^{2},1^{4}$ | $936$ | $6$ | $16$ | $( 1,19, 3)( 2,20, 4)( 5,11)( 6,12)( 9,16,13,18,25,21)(10,15,14,17,26,22)$ |
8A1 | $8^{2},4^{2},1^{2}$ | $702$ | $8$ | $20$ | $( 3, 9,25,21, 8,11,18,24)( 4,10,26,22, 7,12,17,23)( 5,13,19,16)( 6,14,20,15)$ |
8A-1 | $8^{2},4^{2},1^{2}$ | $702$ | $8$ | $20$ | $( 3,24,18,11, 8,21,25, 9)( 4,23,17,12, 7,22,26,10)( 5,16,19,13)( 6,15,20,14)$ |
8B1 | $8^{2},4^{2},2$ | $702$ | $8$ | $21$ | $( 1,17, 3, 6,13,10,16, 7)( 2,18, 4, 5,14, 9,15, 8)(11,22,19,26)(12,21,20,25)(23,24)$ |
8B-1 | $8^{2},4^{2},2$ | $702$ | $8$ | $21$ | $( 1, 7,16,10,13, 6, 3,17)( 2, 8,15, 9,14, 5, 4,18)(11,26,19,22)(12,25,20,21)(23,24)$ |
13A1 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,21,18,24,16, 9, 3,11, 5,13, 8,19,25)( 2,22,17,23,15,10, 4,12, 6,14, 7,20,26)$ |
13A-1 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,25,19, 8,13, 5,11, 3, 9,16,24,18,21)( 2,26,20, 7,14, 6,12, 4,10,15,23,17,22)$ |
13A2 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,18,16, 3, 5, 8,25,21,24, 9,11,13,19)( 2,17,15, 4, 6, 7,26,22,23,10,12,14,20)$ |
13A-2 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,19,13,11, 9,24,21,25, 8, 5, 3,16,18)( 2,20,14,12,10,23,22,26, 7, 6, 4,15,17)$ |
26A1 | $26$ | $432$ | $26$ | $25$ | $( 1,12,21, 6,18,14,24, 7,16,20, 9,26, 3, 2,11,22, 5,17,13,23, 8,15,19,10,25, 4)$ |
26A-1 | $26$ | $432$ | $26$ | $25$ | $( 1, 4,25,10,19,15, 8,23,13,17, 5,22,11, 2, 3,26, 9,20,16, 7,24,14,18, 6,21,12)$ |
26A5 | $26$ | $432$ | $26$ | $25$ | $( 1,14, 9,22, 8, 4,18,20,11,23,25, 6,16, 2,13,10,21, 7, 3,17,19,12,24,26, 5,15)$ |
26A-5 | $26$ | $432$ | $26$ | $25$ | $( 1,15, 5,26,24,12,19,17, 3, 7,21,10,13, 2,16, 6,25,23,11,20,18, 4, 8,22, 9,14)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A1 | 8A-1 | 8B1 | 8B-1 | 13A1 | 13A-1 | 13A2 | 13A-2 | 26A1 | 26A-1 | 26A5 | 26A-5 | ||
Size | 1 | 1 | 117 | 117 | 104 | 624 | 702 | 702 | 104 | 624 | 936 | 936 | 702 | 702 | 702 | 702 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 3A | 3B | 3A | 3A | 4A | 4A | 4A | 4A | 13A2 | 13A-2 | 13A-1 | 13A1 | 13A1 | 13A-1 | 13A2 | 13A-2 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 4B | 2A | 2A | 2C | 2B | 8A1 | 8A-1 | 8B1 | 8B-1 | 13A1 | 13A-1 | 13A2 | 13A-2 | 26A1 | 26A-1 | 26A5 | 26A-5 | |
13 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A-1 | 8A1 | 8B-1 | 8B1 | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | |
Type | |||||||||||||||||||||||||
11232.a.1a | R | ||||||||||||||||||||||||
11232.a.1b | R | ||||||||||||||||||||||||
11232.a.12a | R | ||||||||||||||||||||||||
11232.a.12b | R | ||||||||||||||||||||||||
11232.a.13a | R | ||||||||||||||||||||||||
11232.a.13b | R | ||||||||||||||||||||||||
11232.a.16a1 | C | ||||||||||||||||||||||||
11232.a.16a2 | C | ||||||||||||||||||||||||
11232.a.16a3 | C | ||||||||||||||||||||||||
11232.a.16a4 | C | ||||||||||||||||||||||||
11232.a.16b1 | C | ||||||||||||||||||||||||
11232.a.16b2 | C | ||||||||||||||||||||||||
11232.a.16b3 | C | ||||||||||||||||||||||||
11232.a.16b4 | C | ||||||||||||||||||||||||
11232.a.26a | R | ||||||||||||||||||||||||
11232.a.26b | R | ||||||||||||||||||||||||
11232.a.26c1 | C | ||||||||||||||||||||||||
11232.a.26c2 | C | ||||||||||||||||||||||||
11232.a.26d1 | C | ||||||||||||||||||||||||
11232.a.26d2 | C | ||||||||||||||||||||||||
11232.a.27a | R | ||||||||||||||||||||||||
11232.a.27b | R | ||||||||||||||||||||||||
11232.a.39a | R | ||||||||||||||||||||||||
11232.a.39b | R |
Regular extensions
Data not computed