Properties

Label 26T47
Degree $26$
Order $11232$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $\GL(3,3)$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(26, 47);
 

Group invariants

Abstract group:  $\GL(3,3)$
magma: IdentifyGroup(G);
 
Order:  $11232=2^{5} \cdot 3^{3} \cdot 13$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $26$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $47$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,14,6,17,12,7,22,20)(2,13,5,18,11,8,21,19)(3,24,16,25,4,23,15,26)(9,10)$, $(1,3,26,7,16,13,22,5)(2,4,25,8,15,14,21,6)(9,17,20,24,10,18,19,23)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$
$5616$:  $\PSL(3,3)$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 13: $\PSL(3,3)$

Low degree siblings

26T47, 26T48 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has exactly one arithmetically equivalent field.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{26}$ $1$ $1$ $0$ $()$
2A $2^{13}$ $1$ $2$ $13$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)$
2B $2^{12},1^{2}$ $117$ $2$ $12$ $( 1, 9)( 2,10)( 3, 4)( 5, 7)( 6, 8)(13,18)(14,17)(15,16)(19,22)(20,21)(23,24)(25,26)$
2C $2^{9},1^{8}$ $117$ $2$ $9$ $( 1, 9)( 2,10)( 5,20)( 6,19)( 7,21)( 8,22)(15,16)(23,26)(24,25)$
3A $3^{6},1^{8}$ $104$ $3$ $12$ $( 1, 8,19)( 2, 7,20)( 5,10,21)( 6, 9,22)(11,17,14)(12,18,13)$
3B $3^{8},1^{2}$ $624$ $3$ $16$ $( 1,18,19)( 2,17,20)( 3,25,24)( 4,26,23)( 5,10, 7)( 6, 9, 8)(11,21,14)(12,22,13)$
4A $4^{6},1^{2}$ $702$ $4$ $18$ $( 1,24,10,26)( 2,23, 9,25)( 3,11, 4,12)( 5,21,19, 8)( 6,22,20, 7)(13,18,14,17)$
4B $4^{6},2$ $702$ $4$ $19$ $( 1,25,10,23)( 2,26, 9,24)( 3,11, 4,12)( 5, 7,19,22)( 6, 8,20,21)(13,18,14,17)(15,16)$
6A $6^{3},2^{4}$ $104$ $6$ $19$ $( 1,20, 8, 2,19, 7)( 3, 4)( 5,22,10, 6,21, 9)(11,13,17,12,14,18)(15,16)(23,24)(25,26)$
6B $6^{4},2$ $624$ $6$ $21$ $( 1,14, 8, 2,13, 7)( 3,23,25, 4,24,26)( 5,18,11, 6,17,12)( 9,20,22,10,19,21)(15,16)$
6C $6^{2},3^{2},2^{3},1^{2}$ $936$ $6$ $17$ $( 1,22,19, 9, 8, 6)( 2,21,20,10, 7, 5)(11,17,14)(12,18,13)(15,16)(23,26)(24,25)$
6D $6^{3},2^{3},1^{2}$ $936$ $6$ $18$ $( 1, 9)( 2,10)( 3,23,25, 4,24,26)( 5,21,14, 7,20,17)( 6,22,13, 8,19,18)(15,16)$
8A1 $8^{3},2$ $702$ $8$ $22$ $( 1,23, 8,20,10,25,21, 6)( 2,24, 7,19, 9,26,22, 5)( 3,17,13,12, 4,18,14,11)(15,16)$
8A-1 $8^{3},2$ $702$ $8$ $22$ $( 1,23,19,22,10,25, 5, 7)( 2,24,20,21, 9,26, 6, 8)( 3,14,17,12, 4,13,18,11)(15,16)$
8B1 $8^{3},1^{2}$ $702$ $8$ $21$ $( 1,26,19, 8,10,24, 5,21)( 2,25,20, 7, 9,23, 6,22)( 3,14,17,12, 4,13,18,11)$
8B-1 $8^{3},1^{2}$ $702$ $8$ $21$ $( 1,26, 8, 5,10,24,21,19)( 2,25, 7, 6, 9,23,22,20)( 3,17,13,12, 4,18,14,11)$
13A1 $13^{2}$ $432$ $13$ $24$ $( 1,24, 5,20,21, 8,14,11,15,25,17, 9, 4)( 2,23, 6,19,22, 7,13,12,16,26,18,10, 3)$
13A-1 $13^{2}$ $432$ $13$ $24$ $( 1, 3,10,25,17,12,16,23,19,22, 7, 6,13)( 2, 4, 9,26,18,11,15,24,20,21, 8, 5,14)$
13A2 $13^{2}$ $432$ $13$ $24$ $( 1,25,21,18,11,15, 3,10,24, 5,20, 7,13)( 2,26,22,17,12,16, 4, 9,23, 6,19, 8,14)$
13A-2 $13^{2}$ $432$ $13$ $24$ $( 1,24,20, 7, 6,13, 9, 4,12,16,26,22,17)( 2,23,19, 8, 5,14,10, 3,11,15,25,21,18)$
26A1 $26$ $432$ $26$ $25$ $( 1,25,21, 8, 5,20,17,12,15,24,14,10, 3, 2,26,22, 7, 6,19,18,11,16,23,13, 9, 4)$
26A-1 $26$ $432$ $26$ $25$ $( 1, 3,10,24,14,11,16,26, 8, 5,20,21,18, 2, 4, 9,23,13,12,15,25, 7, 6,19,22,17)$
26A5 $26$ $432$ $26$ $25$ $( 1,25, 7,19,22,17, 9, 4,12,15,24, 5,14, 2,26, 8,20,21,18,10, 3,11,16,23, 6,13)$
26A-5 $26$ $432$ $26$ $25$ $( 1,24, 5,14,11,16, 4, 9,26,22, 7,19,18, 2,23, 6,13,12,15, 3,10,25,21, 8,20,17)$

Malle's constant $a(G)$:     $1/9$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 3A 3B 4A 4B 6A 6B 6C 6D 8A1 8A-1 8B1 8B-1 13A1 13A-1 13A2 13A-2 26A1 26A-1 26A5 26A-5
Size 1 1 117 117 104 624 702 702 104 624 936 936 702 702 702 702 432 432 432 432 432 432 432 432
2 P 1A 1A 1A 1A 3A 3B 2B 2B 3A 3B 3A 3A 4A 4A 4A 4A 13A1 13A-1 13A-2 13A2 13A1 13A-1 13A2 13A-2
3 P 1A 2A 2B 2C 1A 1A 4A 4B 2A 2A 2C 2B 8A1 8A-1 8B1 8B-1 13A-2 13A2 13A-1 13A1 26A1 26A-1 26A5 26A-5
13 P 1A 2A 2B 2C 3A 3B 4A 4B 6A 6B 6C 6D 8A-1 8A1 8B-1 8B1 1A 1A 1A 1A 2A 2A 2A 2A
Type

magma: CharacterTable(G);