Show commands: Magma
Group invariants
Abstract group: | $\GL(3,3)$ |
| |
Order: | $11232=2^{5} \cdot 3^{3} \cdot 13$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $26$ |
| |
Transitive number $t$: | $47$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,14,6,17,12,7,22,20)(2,13,5,18,11,8,21,19)(3,24,16,25,4,23,15,26)(9,10)$, $(1,3,26,7,16,13,22,5)(2,4,25,8,15,14,21,6)(9,17,20,24,10,18,19,23)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5616$: $\PSL(3,3)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 13: $\PSL(3,3)$
Low degree siblings
26T47, 26T48 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $1$ | $2$ | $13$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)$ |
2B | $2^{12},1^{2}$ | $117$ | $2$ | $12$ | $( 1,16)( 2,15)( 3, 4)( 5, 6)( 7,24)( 8,23)( 9,10)(13,18)(14,17)(19,25)(20,26)(21,22)$ |
2C | $2^{9},1^{8}$ | $117$ | $2$ | $9$ | $( 3, 5)( 4, 6)( 7,26)( 8,25)( 9,10)(11,16)(12,15)(17,19)(18,20)$ |
3A | $3^{6},1^{8}$ | $104$ | $3$ | $12$ | $( 5,25,18)( 6,26,17)( 9,15,11)(10,16,12)(13,21,23)(14,22,24)$ |
3B | $3^{8},1^{2}$ | $624$ | $3$ | $16$ | $( 3,20, 8)( 4,19, 7)( 5,13,10)( 6,14, 9)(11,17,24)(12,18,23)(15,26,22)(16,25,21)$ |
4A | $4^{6},1^{2}$ | $702$ | $4$ | $18$ | $( 1,17,16,14)( 2,18,15,13)( 3,10, 4, 9)( 5,21, 6,22)( 7,20,24,26)( 8,19,23,25)$ |
4B | $4^{6},2$ | $702$ | $4$ | $19$ | $( 1, 2)( 3,25, 7, 6)( 4,26, 8, 5)( 9,23,10,24)(11,21,16,14)(12,22,15,13)(17,20,18,19)$ |
6A | $6^{3},2^{4}$ | $104$ | $6$ | $19$ | $( 1, 2)( 3, 4)( 5,17,25, 6,18,26)( 7, 8)( 9,12,15,10,11,16)(13,24,21,14,23,22)(19,20)$ |
6B | $6^{4},2$ | $624$ | $6$ | $21$ | $( 1, 2)( 3, 7,20, 4, 8,19)( 5, 9,13, 6,10,14)(11,23,17,12,24,18)(15,21,26,16,22,25)$ |
6C | $6^{2},3^{2},2^{3},1^{2}$ | $936$ | $6$ | $17$ | $( 3,18, 8, 5,20,25)( 4,17, 7, 6,19,26)( 9,10)(11,16)(12,15)(13,21,23)(14,22,24)$ |
6D | $6^{3},2^{3},1^{2}$ | $936$ | $6$ | $18$ | $( 1, 2)( 5,17,25, 6,18,26)( 7,19)( 8,20)( 9,13,15,21,11,23)(10,14,16,22,12,24)$ |
8A1 | $8^{3},2$ | $702$ | $8$ | $22$ | $( 1,24,17,26,16, 7,14,20)( 2,23,18,25,15, 8,13,19)( 3,22,10, 5, 4,21, 9, 6)(11,12)$ |
8A-1 | $8^{3},2$ | $702$ | $8$ | $22$ | $( 1,20,14, 7,16,26,17,24)( 2,19,13, 8,15,25,18,23)( 3, 6, 9,21, 4, 5,10,22)(11,12)$ |
8B1 | $8^{3},1^{2}$ | $702$ | $8$ | $21$ | $( 1, 6,17,25, 2, 5,18,26)( 3, 9,23,15,11, 8,21,20)( 4,10,24,16,12, 7,22,19)$ |
8B-1 | $8^{3},1^{2}$ | $702$ | $8$ | $21$ | $( 1,26,18, 5, 2,25,17, 6)( 3,20,21, 8,11,15,23, 9)( 4,19,22, 7,12,16,24,10)$ |
13A1 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,11, 8, 4,14,10, 6,19,18,25,22,15,24)( 2,12, 7, 3,13, 9, 5,20,17,26,21,16,23)$ |
13A-1 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,24,15,22,25,18,19, 6,10,14, 4, 8,11)( 2,23,16,21,26,17,20, 5, 9,13, 3, 7,12)$ |
13A2 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1, 8,14, 6,18,22,24,11, 4,10,19,25,15)( 2, 7,13, 5,17,21,23,12, 3, 9,20,26,16)$ |
13A-2 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,15,25,19,10, 4,11,24,22,18, 6,14, 8)( 2,16,26,20, 9, 3,12,23,21,17, 5,13, 7)$ |
26A1 | $26$ | $432$ | $26$ | $25$ | $( 1,20,11,17, 8,26, 4,21,14,16,10,23, 6, 2,19,12,18, 7,25, 3,22,13,15, 9,24, 5)$ |
26A-1 | $26$ | $432$ | $26$ | $25$ | $( 1, 5,24, 9,15,13,22, 3,25, 7,18,12,19, 2, 6,23,10,16,14,21, 4,26, 8,17,11,20)$ |
26A5 | $26$ | $432$ | $26$ | $25$ | $( 1,26,10,12,22, 5, 8,16,19, 3,24,17,14, 2,25, 9,11,21, 6, 7,15,20, 4,23,18,13)$ |
26A-5 | $26$ | $432$ | $26$ | $25$ | $( 1,13,18,23, 4,20,15, 7, 6,21,11, 9,25, 2,14,17,24, 3,19,16, 8, 5,22,12,10,26)$ |
Malle's constant $a(G)$: $1/9$
Character table
1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A1 | 8A-1 | 8B1 | 8B-1 | 13A1 | 13A-1 | 13A2 | 13A-2 | 26A1 | 26A-1 | 26A5 | 26A-5 | ||
Size | 1 | 1 | 117 | 117 | 104 | 624 | 702 | 702 | 104 | 624 | 936 | 936 | 702 | 702 | 702 | 702 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 3A | 3B | 3A | 3A | 4A | 4A | 4A | 4A | 13A2 | 13A-2 | 13A-1 | 13A1 | 13A1 | 13A-1 | 13A2 | 13A-2 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 4B | 2A | 2A | 2C | 2B | 8A1 | 8A-1 | 8B1 | 8B-1 | 13A1 | 13A-1 | 13A2 | 13A-2 | 26A1 | 26A-1 | 26A5 | 26A-5 | |
13 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A-1 | 8A1 | 8B-1 | 8B1 | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | |
Type | |||||||||||||||||||||||||
11232.a.1a | R | ||||||||||||||||||||||||
11232.a.1b | R | ||||||||||||||||||||||||
11232.a.12a | R | ||||||||||||||||||||||||
11232.a.12b | R | ||||||||||||||||||||||||
11232.a.13a | R | ||||||||||||||||||||||||
11232.a.13b | R | ||||||||||||||||||||||||
11232.a.16a1 | C | ||||||||||||||||||||||||
11232.a.16a2 | C | ||||||||||||||||||||||||
11232.a.16a3 | C | ||||||||||||||||||||||||
11232.a.16a4 | C | ||||||||||||||||||||||||
11232.a.16b1 | C | ||||||||||||||||||||||||
11232.a.16b2 | C | ||||||||||||||||||||||||
11232.a.16b3 | C | ||||||||||||||||||||||||
11232.a.16b4 | C | ||||||||||||||||||||||||
11232.a.26a | R | ||||||||||||||||||||||||
11232.a.26b | R | ||||||||||||||||||||||||
11232.a.26c1 | C | ||||||||||||||||||||||||
11232.a.26c2 | C | ||||||||||||||||||||||||
11232.a.26d1 | C | ||||||||||||||||||||||||
11232.a.26d2 | C | ||||||||||||||||||||||||
11232.a.27a | R | ||||||||||||||||||||||||
11232.a.27b | R | ||||||||||||||||||||||||
11232.a.39a | R | ||||||||||||||||||||||||
11232.a.39b | R |
Regular extensions
Data not computed