Show commands:
Magma
magma: G := TransitiveGroup(26, 47);
Group invariants
Abstract group: | $\GL(3,3)$ | magma: IdentifyGroup(G);
| |
Order: | $11232=2^{5} \cdot 3^{3} \cdot 13$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $47$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,14,6,17,12,7,22,20)(2,13,5,18,11,8,21,19)(3,24,16,25,4,23,15,26)(9,10)$, $(1,3,26,7,16,13,22,5)(2,4,25,8,15,14,21,6)(9,17,20,24,10,18,19,23)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5616$: $\PSL(3,3)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 13: $\PSL(3,3)$
Low degree siblings
26T47, 26T48 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $1$ | $2$ | $13$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)$ |
2B | $2^{12},1^{2}$ | $117$ | $2$ | $12$ | $( 1, 9)( 2,10)( 3, 4)( 5, 7)( 6, 8)(13,18)(14,17)(15,16)(19,22)(20,21)(23,24)(25,26)$ |
2C | $2^{9},1^{8}$ | $117$ | $2$ | $9$ | $( 1, 9)( 2,10)( 5,20)( 6,19)( 7,21)( 8,22)(15,16)(23,26)(24,25)$ |
3A | $3^{6},1^{8}$ | $104$ | $3$ | $12$ | $( 1, 8,19)( 2, 7,20)( 5,10,21)( 6, 9,22)(11,17,14)(12,18,13)$ |
3B | $3^{8},1^{2}$ | $624$ | $3$ | $16$ | $( 1,18,19)( 2,17,20)( 3,25,24)( 4,26,23)( 5,10, 7)( 6, 9, 8)(11,21,14)(12,22,13)$ |
4A | $4^{6},1^{2}$ | $702$ | $4$ | $18$ | $( 1,24,10,26)( 2,23, 9,25)( 3,11, 4,12)( 5,21,19, 8)( 6,22,20, 7)(13,18,14,17)$ |
4B | $4^{6},2$ | $702$ | $4$ | $19$ | $( 1,25,10,23)( 2,26, 9,24)( 3,11, 4,12)( 5, 7,19,22)( 6, 8,20,21)(13,18,14,17)(15,16)$ |
6A | $6^{3},2^{4}$ | $104$ | $6$ | $19$ | $( 1,20, 8, 2,19, 7)( 3, 4)( 5,22,10, 6,21, 9)(11,13,17,12,14,18)(15,16)(23,24)(25,26)$ |
6B | $6^{4},2$ | $624$ | $6$ | $21$ | $( 1,14, 8, 2,13, 7)( 3,23,25, 4,24,26)( 5,18,11, 6,17,12)( 9,20,22,10,19,21)(15,16)$ |
6C | $6^{2},3^{2},2^{3},1^{2}$ | $936$ | $6$ | $17$ | $( 1,22,19, 9, 8, 6)( 2,21,20,10, 7, 5)(11,17,14)(12,18,13)(15,16)(23,26)(24,25)$ |
6D | $6^{3},2^{3},1^{2}$ | $936$ | $6$ | $18$ | $( 1, 9)( 2,10)( 3,23,25, 4,24,26)( 5,21,14, 7,20,17)( 6,22,13, 8,19,18)(15,16)$ |
8A1 | $8^{3},2$ | $702$ | $8$ | $22$ | $( 1,23, 8,20,10,25,21, 6)( 2,24, 7,19, 9,26,22, 5)( 3,17,13,12, 4,18,14,11)(15,16)$ |
8A-1 | $8^{3},2$ | $702$ | $8$ | $22$ | $( 1,23,19,22,10,25, 5, 7)( 2,24,20,21, 9,26, 6, 8)( 3,14,17,12, 4,13,18,11)(15,16)$ |
8B1 | $8^{3},1^{2}$ | $702$ | $8$ | $21$ | $( 1,26,19, 8,10,24, 5,21)( 2,25,20, 7, 9,23, 6,22)( 3,14,17,12, 4,13,18,11)$ |
8B-1 | $8^{3},1^{2}$ | $702$ | $8$ | $21$ | $( 1,26, 8, 5,10,24,21,19)( 2,25, 7, 6, 9,23,22,20)( 3,17,13,12, 4,18,14,11)$ |
13A1 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,24, 5,20,21, 8,14,11,15,25,17, 9, 4)( 2,23, 6,19,22, 7,13,12,16,26,18,10, 3)$ |
13A-1 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1, 3,10,25,17,12,16,23,19,22, 7, 6,13)( 2, 4, 9,26,18,11,15,24,20,21, 8, 5,14)$ |
13A2 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,25,21,18,11,15, 3,10,24, 5,20, 7,13)( 2,26,22,17,12,16, 4, 9,23, 6,19, 8,14)$ |
13A-2 | $13^{2}$ | $432$ | $13$ | $24$ | $( 1,24,20, 7, 6,13, 9, 4,12,16,26,22,17)( 2,23,19, 8, 5,14,10, 3,11,15,25,21,18)$ |
26A1 | $26$ | $432$ | $26$ | $25$ | $( 1,25,21, 8, 5,20,17,12,15,24,14,10, 3, 2,26,22, 7, 6,19,18,11,16,23,13, 9, 4)$ |
26A-1 | $26$ | $432$ | $26$ | $25$ | $( 1, 3,10,24,14,11,16,26, 8, 5,20,21,18, 2, 4, 9,23,13,12,15,25, 7, 6,19,22,17)$ |
26A5 | $26$ | $432$ | $26$ | $25$ | $( 1,25, 7,19,22,17, 9, 4,12,15,24, 5,14, 2,26, 8,20,21,18,10, 3,11,16,23, 6,13)$ |
26A-5 | $26$ | $432$ | $26$ | $25$ | $( 1,24, 5,14,11,16, 4, 9,26,22, 7,19,18, 2,23, 6,13,12,15, 3,10,25,21, 8,20,17)$ |
Malle's constant $a(G)$: $1/9$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A1 | 8A-1 | 8B1 | 8B-1 | 13A1 | 13A-1 | 13A2 | 13A-2 | 26A1 | 26A-1 | 26A5 | 26A-5 | ||
Size | 1 | 1 | 117 | 117 | 104 | 624 | 702 | 702 | 104 | 624 | 936 | 936 | 702 | 702 | 702 | 702 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | 432 | |
2 P | 1A | 1A | 1A | 1A | 3A | 3B | 2B | 2B | 3A | 3B | 3A | 3A | 4A | 4A | 4A | 4A | 13A1 | 13A-1 | 13A-2 | 13A2 | 13A1 | 13A-1 | 13A2 | 13A-2 | |
3 P | 1A | 2A | 2B | 2C | 1A | 1A | 4A | 4B | 2A | 2A | 2C | 2B | 8A1 | 8A-1 | 8B1 | 8B-1 | 13A-2 | 13A2 | 13A-1 | 13A1 | 26A1 | 26A-1 | 26A5 | 26A-5 | |
13 P | 1A | 2A | 2B | 2C | 3A | 3B | 4A | 4B | 6A | 6B | 6C | 6D | 8A-1 | 8A1 | 8B-1 | 8B1 | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | |
Type |
magma: CharacterTable(G);