Show commands:
Magma
magma: G := TransitiveGroup(26, 44);
Group invariants
Abstract group: | $C_{13}^2:C_3:\OD_{16}$ | magma: IdentifyGroup(G);
| |
Order: | $8112=2^{4} \cdot 3 \cdot 13^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $44$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,9,11,5,10,8)(2,6,7,4,13,12)(14,15,24)(16,20,17)(18,25,23)(19,21,26)$, $(1,17,3,24,13,20,11,26)(2,14,8,22,12,23,6,15)(4,21,5,18,10,16,9,19)(7,25)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ $8$: $C_4\times C_2$ $12$: $D_{6}$, $C_3 : C_4$ x 2 $16$: $C_8:C_2$ $24$: 24T6 $48$: 24T20 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{6},1^{14}$ | $26$ | $2$ | $6$ | $(14,23)(15,22)(16,21)(17,20)(18,19)(24,26)$ |
2B | $2^{12},1^{2}$ | $169$ | $2$ | $12$ | $( 1, 5)( 2, 4)( 6,13)( 7,12)( 8,11)( 9,10)(15,26)(16,25)(17,24)(18,23)(19,22)(20,21)$ |
3A | $3^{8},1^{2}$ | $338$ | $3$ | $16$ | $( 1,13, 4)( 2, 9, 7)( 3, 5,10)( 8,11,12)(14,18,17)(15,21,26)(16,24,22)(19,20,23)$ |
4A1 | $4^{6},1^{2}$ | $169$ | $4$ | $18$ | $( 1, 6, 5,13)( 2,11, 4, 8)( 7,10,12, 9)(15,19,26,22)(16,24,25,17)(18,21,23,20)$ |
4A-1 | $4^{6},1^{2}$ | $169$ | $4$ | $18$ | $( 1,13, 5, 6)( 2, 8, 4,11)( 7, 9,12,10)(15,22,26,19)(16,17,25,24)(18,20,23,21)$ |
4B | $4^{6},1^{2}$ | $338$ | $4$ | $18$ | $( 1,12, 9,11)( 2, 7, 8, 3)( 4,10, 6,13)(14,23,16,20)(17,25,26,18)(19,22,24,21)$ |
6A | $6^{4},1^{2}$ | $338$ | $6$ | $20$ | $( 1, 2, 6, 9, 8, 4)( 3,10,12, 7,13,11)(14,18,19,16,25,24)(17,22,20,26,21,23)$ |
6B1 | $6^{2},3^{4},1^{2}$ | $338$ | $6$ | $18$ | $( 1, 4,13)( 2, 7, 9)( 3,10, 5)( 8,12,11)(14,20,18,23,17,19)(15,24,21,22,26,16)$ |
6B-1 | $6^{2},3^{4},1^{2}$ | $338$ | $6$ | $18$ | $( 1,13, 4)( 2, 9, 7)( 3, 5,10)( 8,11,12)(14,19,17,23,18,20)(15,16,26,22,21,24)$ |
8A1 | $8^{3},2$ | $1014$ | $8$ | $22$ | $( 1,24, 6,25, 5,17,13,16)( 2,19,11,26, 4,22, 8,15)( 3,14)( 7,20,10,18,12,21, 9,23)$ |
8A-1 | $8^{3},2$ | $1014$ | $8$ | $22$ | $( 1,16,13,17, 5,25, 6,24)( 2,15, 8,22, 4,26,11,19)( 3,14)( 7,23, 9,21,12,18,10,20)$ |
8B1 | $8^{3},2$ | $1014$ | $8$ | $22$ | $( 1,15,12,23, 2,24, 4,16)( 3,20, 9,22,13,19, 7,17)( 5,25, 6,21,11,14,10,18)( 8,26)$ |
8B-1 | $8^{3},2$ | $1014$ | $8$ | $22$ | $( 1,16, 4,24, 2,23,12,15)( 3,17, 7,19,13,22, 9,20)( 5,18,10,14,11,21, 6,25)( 8,26)$ |
12A1 | $12^{2},1^{2}$ | $338$ | $12$ | $22$ | $( 1,10, 2,12, 6, 7, 9,13, 8,11, 4, 3)(14,21,18,23,19,17,16,22,25,20,24,26)$ |
12A5 | $12^{2},1^{2}$ | $338$ | $12$ | $22$ | $( 1, 7, 4,12, 8,10, 9, 3, 6,11, 2,13)(14,17,24,23,25,21,16,26,19,20,18,22)$ |
12B1 | $12^{2},1^{2}$ | $338$ | $12$ | $22$ | $( 1, 9,12, 5, 4, 2,11, 3,13, 7, 8,10)(14,17,22,26,24,25,18,15,23,19,21,20)$ |
12B-1 | $12^{2},1^{2}$ | $338$ | $12$ | $22$ | $( 1,10, 8, 7,13, 3,11, 2, 4, 5,12, 9)(14,20,21,19,23,15,18,25,24,26,22,17)$ |
13A | $13,1^{13}$ | $24$ | $13$ | $12$ | $(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13B1 | $13^{2}$ | $48$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13B2 | $13^{2}$ | $48$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13B4 | $13^{2}$ | $48$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
26A | $13,2^{6},1$ | $312$ | $26$ | $18$ | $( 1, 5)( 2, 4)( 6,13)( 7,12)( 8,11)( 9,10)(14,22,17,25,20,15,23,18,26,21,16,24,19)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 3A | 4A1 | 4A-1 | 4B | 6A | 6B1 | 6B-1 | 8A1 | 8A-1 | 8B1 | 8B-1 | 12A1 | 12A5 | 12B1 | 12B-1 | 13A | 13B1 | 13B2 | 13B4 | 26A | ||
Size | 1 | 26 | 169 | 338 | 169 | 169 | 338 | 338 | 338 | 338 | 1014 | 1014 | 1014 | 1014 | 338 | 338 | 338 | 338 | 24 | 48 | 48 | 48 | 312 | |
2 P | 1A | 1A | 1A | 3A | 2B | 2B | 2B | 3A | 3A | 3A | 4A1 | 4A-1 | 4A1 | 4A-1 | 6A | 6A | 6A | 6A | 13A | 13B2 | 13B4 | 13B1 | 13A | |
3 P | 1A | 2A | 2B | 1A | 4A-1 | 4A1 | 4B | 2B | 2A | 2A | 8A-1 | 8A1 | 8B-1 | 8B1 | 4B | 4B | 4A-1 | 4A1 | 13A | 13B2 | 13B4 | 13B1 | 26A | |
13 P | 1A | 2A | 2B | 3A | 4A1 | 4A-1 | 4B | 6A | 6B1 | 6B-1 | 8A1 | 8A-1 | 8B1 | 8B-1 | 12A1 | 12A5 | 12B1 | 12B-1 | 1A | 1A | 1A | 1A | 2A | |
Type | ||||||||||||||||||||||||
8112.be.1a | R | |||||||||||||||||||||||
8112.be.1b | R | |||||||||||||||||||||||
8112.be.1c | R | |||||||||||||||||||||||
8112.be.1d | R | |||||||||||||||||||||||
8112.be.1e1 | C | |||||||||||||||||||||||
8112.be.1e2 | C | |||||||||||||||||||||||
8112.be.1f1 | C | |||||||||||||||||||||||
8112.be.1f2 | C | |||||||||||||||||||||||
8112.be.2a | R | |||||||||||||||||||||||
8112.be.2b | R | |||||||||||||||||||||||
8112.be.2c | S | |||||||||||||||||||||||
8112.be.2d | S | |||||||||||||||||||||||
8112.be.2e1 | C | |||||||||||||||||||||||
8112.be.2e2 | C | |||||||||||||||||||||||
8112.be.2f1 | C | |||||||||||||||||||||||
8112.be.2f2 | C | |||||||||||||||||||||||
8112.be.2f3 | C | |||||||||||||||||||||||
8112.be.2f4 | C | |||||||||||||||||||||||
8112.be.24a | R | |||||||||||||||||||||||
8112.be.24b | R | |||||||||||||||||||||||
8112.be.48a1 | R | |||||||||||||||||||||||
8112.be.48a2 | R | |||||||||||||||||||||||
8112.be.48a3 | R |
magma: CharacterTable(G);
Regular extensions
Data not computed