Show commands: Magma
Group invariants
Abstract group: | $\PSL(2,25)$ |
| |
Order: | $7800=2^{3} \cdot 3 \cdot 5^{2} \cdot 13$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $26$ |
| |
Transitive number $t$: | $42$ |
| |
Parity: | $1$ |
| |
Primitive: | yes |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,19,26,4,17,2,6,22,18,5,21,12,16)(3,8,7,14,23,13,24,10,25,9,11,15,20)$, $(1,21,5,9,4,2,10,16,12,18,14,25,3)(6,23,7,24,17,11,8,20,26,15,22,19,13)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 13: None
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{2}$ | $325$ | $2$ | $12$ | $( 1,19)( 2, 6)( 3,14)( 4,10)( 7,25)( 8,15)( 9,17)(11,18)(12,23)(13,26)(16,22)(20,24)$ |
3A | $3^{8},1^{2}$ | $650$ | $3$ | $16$ | $( 1,25,26)( 2, 9,20)( 3, 8,10)( 4,14,15)( 6,17,24)( 7,13,19)(11,12,22)(16,18,23)$ |
4A | $4^{6},1^{2}$ | $650$ | $4$ | $18$ | $( 1,20,19,24)( 2, 7, 6,25)( 3,18,14,11)( 4,22,10,16)( 8,23,15,12)( 9,13,17,26)$ |
5A | $5^{5},1$ | $312$ | $5$ | $20$ | $( 1,17, 5,23,22)( 2,14, 4,18,16)( 3,15,21,24,13)( 7, 8,26, 9,10)(11,20,19,12,25)$ |
5B | $5^{5},1$ | $312$ | $5$ | $20$ | $( 1,22,25,20,16)( 3,13,14, 9, 7)( 4,21,12,24,11)( 5,18,10,17, 8)( 6,15,26,19,23)$ |
6A | $6^{4},1^{2}$ | $650$ | $6$ | $20$ | $( 1,13,25,19,26, 7)( 2,24, 9, 6,20,17)( 3, 4, 8,14,10,15)(11,16,12,18,22,23)$ |
12A1 | $12^{2},1^{2}$ | $650$ | $12$ | $22$ | $( 1, 6,13,20,25,17,19, 2,26,24, 7, 9)( 3,12, 4,18, 8,22,14,23,10,11,15,16)$ |
12A5 | $12^{2},1^{2}$ | $650$ | $12$ | $22$ | $( 1,17, 7,20,26, 6,19, 9,25,24,13, 2)( 3,22,15,18,10,12,14,16, 8,11, 4,23)$ |
13A1 | $13^{2}$ | $600$ | $13$ | $24$ | $( 1,12, 9,21, 8,25,17, 3, 4,19, 2,15, 5)( 6,24,13, 7,26,22,16,10,23,14,18,11,20)$ |
13A2 | $13^{2}$ | $600$ | $13$ | $24$ | $( 1, 9, 8,17, 4, 2, 5,12,21,25, 3,19,15)( 6,13,26,16,23,18,20,24, 7,22,10,14,11)$ |
13A3 | $13^{2}$ | $600$ | $13$ | $24$ | $( 1,21,17,19, 5, 9,25, 4,15,12, 8, 3, 2)( 6, 7,16,14,20,13,22,23,11,24,26,10,18)$ |
13A4 | $13^{2}$ | $600$ | $13$ | $24$ | $( 1, 8, 4, 5,21, 3,15, 9,17, 2,12,25,19)( 6,26,23,20, 7,10,11,13,16,18,24,22,14)$ |
13A5 | $13^{2}$ | $600$ | $13$ | $24$ | $( 1,25, 2, 9, 3, 5, 8,19,12,17,15,21, 4)( 6,22,18,13,10,20,26,14,24,16,11, 7,23)$ |
13A6 | $13^{2}$ | $600$ | $13$ | $24$ | $( 1,17, 5,25,15, 8, 2,21,19, 9, 4,12, 3)( 6,16,20,22,11,26,18, 7,14,13,23,24,10)$ |
Malle's constant $a(G)$: $1/12$
Character table
1A | 2A | 3A | 4A | 5A | 5B | 6A | 12A1 | 12A5 | 13A1 | 13A2 | 13A3 | 13A4 | 13A5 | 13A6 | ||
Size | 1 | 325 | 650 | 650 | 312 | 312 | 650 | 650 | 650 | 600 | 600 | 600 | 600 | 600 | 600 | |
2 P | 1A | 1A | 3A | 2A | 5A | 5B | 3A | 6A | 6A | 13A2 | 13A4 | 13A6 | 13A5 | 13A3 | 13A1 | |
3 P | 1A | 2A | 1A | 4A | 5A | 5B | 2A | 4A | 4A | 13A3 | 13A6 | 13A4 | 13A1 | 13A2 | 13A5 | |
5 P | 1A | 2A | 3A | 4A | 1A | 1A | 6A | 12A5 | 12A1 | 13A5 | 13A3 | 13A2 | 13A6 | 13A1 | 13A4 | |
13 P | 1A | 2A | 3A | 4A | 5A | 5B | 6A | 12A1 | 12A5 | 1A | 1A | 1A | 1A | 1A | 1A | |
Type | ||||||||||||||||
7800.a.1a | R | |||||||||||||||
7800.a.13a | R | |||||||||||||||
7800.a.13b | R | |||||||||||||||
7800.a.24a1 | R | |||||||||||||||
7800.a.24a2 | R | |||||||||||||||
7800.a.24a3 | R | |||||||||||||||
7800.a.24a4 | R | |||||||||||||||
7800.a.24a5 | R | |||||||||||||||
7800.a.24a6 | R | |||||||||||||||
7800.a.25a | R | |||||||||||||||
7800.a.26a | R | |||||||||||||||
7800.a.26b | R | |||||||||||||||
7800.a.26c | R | |||||||||||||||
7800.a.26d1 | R | |||||||||||||||
7800.a.26d2 | R |
Regular extensions
Data not computed