Show commands:
Magma
magma: G := TransitiveGroup(26, 34);
Group invariants
Abstract group: | $C_{13}^2:(C_3\times Q_8)$ | magma: IdentifyGroup(G);
| |
Order: | $4056=2^{3} \cdot 3 \cdot 13^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $34$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,26,8,17,10,20,5,19,11,15,9,25)(2,21,12,23,13,18,4,24,7,22,6,14)(3,16)$, $(1,6,9,3,2,4,13,8,5,11,12,10)(14,20,19,17,26,18,15,22,23,25,16,24)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $3$: $C_3$ $4$: $C_2^2$ $6$: $C_6$ x 3 $8$: $Q_8$ $12$: $C_6\times C_2$ $24$: 24T4 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
26T34 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{2}$ | $169$ | $2$ | $12$ | $( 2,13)( 3,12)( 4,11)( 5,10)( 6, 9)( 7, 8)(14,15)(16,26)(17,25)(18,24)(19,23)(20,22)$ |
3A1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 2, 4,10)( 3, 7, 6)( 5,13,11)( 8, 9,12)(14,26,23)(15,16,19)(17,22,24)(18,25,20)$ |
3A-1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 2,10, 4)( 3, 6, 7)( 5,11,13)( 8,12, 9)(14,23,26)(15,19,16)(17,24,22)(18,20,25)$ |
4A | $4^{6},2$ | $338$ | $4$ | $19$ | $( 1,24, 7,22)( 2,15, 6,18)( 3,19, 5,14)( 4,23)( 8,26,13,20)( 9,17,12,16)(10,21,11,25)$ |
4B | $4^{6},2$ | $338$ | $4$ | $19$ | $( 1,24, 5,26)( 2,18, 4,19)( 3,25)( 6,20,13,17)( 7,14,12,23)( 8,21,11,16)( 9,15,10,22)$ |
4C | $4^{6},1^{2}$ | $338$ | $4$ | $18$ | $( 2, 9,13, 6)( 3, 4,12,11)( 5, 7,10, 8)(14,25,15,17)(16,22,26,20)(18,19,24,23)$ |
6A1 | $6^{4},1^{2}$ | $169$ | $6$ | $20$ | $( 2, 5, 4,13,10,11)( 3, 9, 7,12, 6, 8)(14,19,26,15,23,16)(17,18,22,25,24,20)$ |
6A-1 | $6^{4},1^{2}$ | $169$ | $6$ | $20$ | $( 2,11,10,13, 4, 5)( 3, 8, 6,12, 7, 9)(14,16,23,15,26,19)(17,20,24,25,22,18)$ |
12A1 | $12^{2},2$ | $338$ | $12$ | $23$ | $( 1,24,12,26, 4,21,11,14,13,25, 8,17)( 2,23, 3,22, 7,18,10,15, 9,16, 5,20)( 6,19)$ |
12A-1 | $12^{2},2$ | $338$ | $12$ | $23$ | $( 1,24, 9,21,11,17, 5,16,10,19, 8,23)( 2,22, 6,14, 7,25, 4,18,13,26,12,15)( 3,20)$ |
12B1 | $12^{2},1^{2}$ | $338$ | $12$ | $22$ | $( 2, 8,11, 6,10,12,13, 7, 4, 9, 5, 3)(14,18,16,17,23,20,15,24,26,25,19,22)$ |
12B-1 | $12^{2},1^{2}$ | $338$ | $12$ | $22$ | $( 2,12, 5, 6, 4, 8,13, 3,10, 9,11, 7)(14,20,19,17,26,18,15,22,23,25,16,24)$ |
12C1 | $12^{2},2$ | $338$ | $12$ | $23$ | $( 1,24)( 2,21,11,20,10,23,13,14, 4,15, 5,25)( 3,18, 8,16, 6,22,12,17, 7,19, 9,26)$ |
12C-1 | $12^{2},2$ | $338$ | $12$ | $23$ | $( 1,24, 6,25,13,16, 2,19,10,18, 3,14)( 4,22, 5,17, 9,23,12,21,11,26, 7,20)( 8,15)$ |
13A | $13^{2}$ | $24$ | $13$ | $24$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13B | $13,1^{13}$ | $24$ | $13$ | $12$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)$ |
13C | $13^{2}$ | $24$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13D1 | $13^{2}$ | $24$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13D2 | $13^{2}$ | $24$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,22,17,25,20,15,23,18,26,21,16,24,19)$ |
13E1 | $13^{2}$ | $24$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13E2 | $13^{2}$ | $24$ | $13$ | $24$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A1 | 3A-1 | 4A | 4B | 4C | 6A1 | 6A-1 | 12A1 | 12A-1 | 12B1 | 12B-1 | 12C1 | 12C-1 | 13A | 13B | 13C | 13D1 | 13D2 | 13E1 | 13E2 | ||
Size | 1 | 169 | 169 | 169 | 338 | 338 | 338 | 169 | 169 | 338 | 338 | 338 | 338 | 338 | 338 | 24 | 24 | 24 | 24 | 24 | 24 | 24 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 2A | 2A | 2A | 3A1 | 3A-1 | 6A1 | 6A-1 | 6A-1 | 6A1 | 6A-1 | 6A1 | 13E2 | 13A | 13E1 | 13C | 13D1 | 13B | 13D2 | |
3 P | 1A | 2A | 1A | 1A | 4A | 4B | 4C | 2A | 2A | 4A | 4B | 4C | 4C | 4A | 4B | 13E1 | 13A | 13E2 | 13C | 13D2 | 13B | 13D1 | |
13 P | 1A | 2A | 3A1 | 3A-1 | 4A | 4B | 4C | 6A1 | 6A-1 | 12A1 | 12B1 | 12C-1 | 12C1 | 12A-1 | 12B-1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | |
Type |
magma: CharacterTable(G);