Show commands: Magma
Group invariants
Abstract group: | $C_{13}^2:C_{24}$ |
| |
Order: | $4056=2^{3} \cdot 3 \cdot 13^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $26$ |
| |
Transitive number $t$: | $29$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,2)(3,13)(4,12)(5,11)(6,10)(7,9)(14,26)(15,25)(16,24)(17,23)(18,22)(19,21)$, $(1,26,11,21,3,25,12,14,10,15,9,22,2,19,5,24,13,20,4,18,6,17,7,23)(8,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $C_6$ $8$: $C_8$ $12$: $C_{12}$ $24$: $C_{24}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
26T29 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{2}$ | $169$ | $2$ | $12$ | $( 1, 6)( 2, 5)( 3, 4)( 7,13)( 8,12)( 9,11)(14,19)(15,18)(16,17)(20,26)(21,25)(22,24)$ |
3A1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1, 7, 9)( 2, 3,12)( 4, 8, 5)( 6,13,11)(14,20,22)(15,16,25)(17,21,18)(19,26,24)$ |
3A-1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1, 9, 7)( 2,12, 3)( 4, 5, 8)( 6,11,13)(14,22,20)(15,25,16)(17,18,21)(19,24,26)$ |
4A1 | $4^{6},1^{2}$ | $169$ | $4$ | $18$ | $( 1, 3, 6, 4)( 2,11, 5, 9)( 7,12,13, 8)(14,16,19,17)(15,24,18,22)(20,25,26,21)$ |
4A-1 | $4^{6},1^{2}$ | $169$ | $4$ | $18$ | $( 1, 4, 6, 3)( 2, 9, 5,11)( 7, 8,13,12)(14,17,19,16)(15,22,18,24)(20,21,26,25)$ |
6A1 | $6^{4},1^{2}$ | $169$ | $6$ | $20$ | $( 1,11, 7, 6, 9,13)( 2, 8, 3, 5,12, 4)(14,24,20,19,22,26)(15,21,16,18,25,17)$ |
6A-1 | $6^{4},1^{2}$ | $169$ | $6$ | $20$ | $( 1,13, 9, 6, 7,11)( 2, 4,12, 5, 3, 8)(14,26,22,19,20,24)(15,17,25,18,16,21)$ |
8A1 | $8^{3},2$ | $169$ | $8$ | $22$ | $( 1,18, 3,22, 6,15, 4,24)( 2,20,11,25, 5,26, 9,21)( 7,17,12,14,13,16, 8,19)(10,23)$ |
8A-1 | $8^{3},2$ | $169$ | $8$ | $22$ | $( 1,24, 4,15, 6,22, 3,18)( 2,21, 9,26, 5,25,11,20)( 7,19, 8,16,13,14,12,17)(10,23)$ |
8A3 | $8^{3},2$ | $169$ | $8$ | $22$ | $( 1,22, 4,18, 6,24, 3,15)( 2,25, 9,20, 5,21,11,26)( 7,14, 8,17,13,19,12,16)(10,23)$ |
8A-3 | $8^{3},2$ | $169$ | $8$ | $22$ | $( 1,15, 3,24, 6,18, 4,22)( 2,26,11,21, 5,20, 9,25)( 7,16,12,19,13,17, 8,14)(10,23)$ |
12A1 | $12^{2},1^{2}$ | $169$ | $12$ | $22$ | $( 1, 8,11, 3, 7, 5, 6,12, 9, 4,13, 2)(14,21,24,16,20,18,19,25,22,17,26,15)$ |
12A-1 | $12^{2},1^{2}$ | $169$ | $12$ | $22$ | $( 1, 2,13, 4, 9,12, 6, 5, 7, 3,11, 8)(14,15,26,17,22,25,19,18,20,16,24,21)$ |
12A5 | $12^{2},1^{2}$ | $169$ | $12$ | $22$ | $( 1, 5,13, 3, 9, 8, 6, 2, 7, 4,11,12)(14,18,26,16,22,21,19,15,20,17,24,25)$ |
12A-5 | $12^{2},1^{2}$ | $169$ | $12$ | $22$ | $( 1,12,11, 4, 7, 2, 6, 8, 9, 3,13, 5)(14,25,24,17,20,15,19,21,22,16,26,18)$ |
13A | $13^{2}$ | $24$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,21,15,22,16,23,17,24,18,25,19,26,20)$ |
13B | $13^{2}$ | $24$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13C | $13^{2}$ | $24$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13D | $13^{2}$ | $24$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ |
13E | $13^{2}$ | $24$ | $13$ | $24$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13F | $13,1^{13}$ | $24$ | $13$ | $12$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)$ |
13G | $13^{2}$ | $24$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
24A1 | $24,2$ | $169$ | $24$ | $24$ | $( 1,20, 8,18,11,19, 3,25, 7,22, 5,17, 6,26,12,15, 9,14, 4,21,13,24, 2,16)(10,23)$ |
24A-1 | $24,2$ | $169$ | $24$ | $24$ | $( 1,16, 2,24,13,21, 4,14, 9,15,12,26, 6,17, 5,22, 7,25, 3,19,11,18, 8,20)(10,23)$ |
24A5 | $24,2$ | $169$ | $24$ | $24$ | $( 1,19, 5,15,13,20, 3,17, 9,24, 8,25, 6,14, 2,18, 7,26, 4,16,11,22,12,21)(10,23)$ |
24A-5 | $24,2$ | $169$ | $24$ | $24$ | $( 1,21,12,22,11,16, 4,26, 7,18, 2,14, 6,25, 8,24, 9,17, 3,20,13,15, 5,19)(10,23)$ |
24A7 | $24,2$ | $169$ | $24$ | $24$ | $( 1,25,12,24,11,17, 4,20, 7,15, 2,19, 6,21, 8,22, 9,16, 3,26,13,18, 5,14)(10,23)$ |
24A-7 | $24,2$ | $169$ | $24$ | $24$ | $( 1,14, 5,18,13,26, 3,16, 9,22, 8,21, 6,19, 2,15, 7,20, 4,17,11,24,12,25)(10,23)$ |
24A11 | $24,2$ | $169$ | $24$ | $24$ | $( 1,17, 2,22,13,25, 4,19, 9,18,12,20, 6,16, 5,24, 7,21, 3,14,11,15, 8,26)(10,23)$ |
24A-11 | $24,2$ | $169$ | $24$ | $24$ | $( 1,26, 8,15,11,14, 3,21, 7,24, 5,16, 6,20,12,18, 9,19, 4,25,13,22, 2,17)(10,23)$ |
Malle's constant $a(G)$: $1/12$
Character table
31 x 31 character table
Regular extensions
Data not computed