Show commands: Magma
Group invariants
Abstract group: | $C_{13}^2:(C_3\times S_3)$ |
| |
Order: | $3042=2 \cdot 3^{2} \cdot 13^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $26$ |
| |
Transitive number $t$: | $27$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,16,3,21,9,23)(2,25,6,22,5,26)(4,17,12,24,10,19)(7,18,8,14,11,15)(13,20)$, $(1,6,8)(2,9,4)(3,12,13)(7,11,10)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
39T39, 39T40Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $39$ | $2$ | $13$ | $( 1,24)( 2,14)( 3,17)( 4,20)( 5,23)( 6,26)( 7,16)( 8,19)( 9,22)(10,25)(11,15)(12,18)(13,21)$ |
3A1 | $3^{4},1^{14}$ | $26$ | $3$ | $8$ | $( 1, 4, 5)( 2,13, 8)( 3, 9,11)( 6,10, 7)$ |
3A-1 | $3^{4},1^{14}$ | $26$ | $3$ | $8$ | $( 1, 5, 4)( 2, 8,13)( 3,11, 9)( 6, 7,10)$ |
3B1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1, 2, 5)( 3, 8,10)( 4,11, 6)( 9,13,12)(14,23,24)(15,26,20)(17,19,25)(18,22,21)$ |
3B-1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1, 5, 2)( 3,10, 8)( 4, 6,11)( 9,12,13)(14,24,23)(15,20,26)(17,25,19)(18,21,22)$ |
3C | $3^{8},1^{2}$ | $338$ | $3$ | $16$ | $( 1, 3, 8)( 2,12,11)( 5,13, 7)( 6, 9,10)(14,26,23)(15,16,19)(17,22,24)(18,25,20)$ |
6A1 | $6^{4},2$ | $507$ | $6$ | $21$ | $( 1,23, 2,24, 5,14)( 3,25, 8,17,10,19)( 4,26,11,20, 6,15)( 7,16)( 9,18,13,22,12,21)$ |
6A-1 | $6^{4},2$ | $507$ | $6$ | $21$ | $( 1,14, 5,24, 2,23)( 3,19,10,17, 8,25)( 4,15, 6,20,11,26)( 7,16)( 9,21,12,22,13,18)$ |
13A1 | $13,1^{13}$ | $6$ | $13$ | $12$ | $(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13A-1 | $13,1^{13}$ | $6$ | $13$ | $12$ | $(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13A2 | $13,1^{13}$ | $6$ | $13$ | $12$ | $(14,22,17,25,20,15,23,18,26,21,16,24,19)$ |
13A-2 | $13,1^{13}$ | $6$ | $13$ | $12$ | $(14,19,24,16,21,26,18,23,15,20,25,17,22)$ |
13B1 | $13^{2}$ | $9$ | $13$ | $24$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13B-1 | $13^{2}$ | $9$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13B2 | $13^{2}$ | $9$ | $13$ | $24$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,19,24,16,21,26,18,23,15,20,25,17,22)$ |
13B-2 | $13^{2}$ | $9$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,22,17,25,20,15,23,18,26,21,16,24,19)$ |
13C1 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13C2 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,21,15,22,16,23,17,24,18,25,19,26,20)$ |
13D1 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13D-1 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13D2 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
13D-2 | $13^{2}$ | $18$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
26A1 | $26$ | $117$ | $26$ | $25$ | $( 1,24, 2,20, 3,16, 4,25, 5,21, 6,17, 7,26, 8,22, 9,18,10,14,11,23,12,19,13,15)$ |
26A-1 | $26$ | $117$ | $26$ | $25$ | $( 1,15,13,19,12,23,11,14,10,18, 9,22, 8,26, 7,17, 6,21, 5,25, 4,16, 3,20, 2,24)$ |
26A5 | $26$ | $117$ | $26$ | $25$ | $( 1,16, 6,22,11,15, 3,21, 8,14,13,20, 5,26,10,19, 2,25, 7,18,12,24, 4,17, 9,23)$ |
26A-5 | $26$ | $117$ | $26$ | $25$ | $( 1,23, 9,17, 4,24,12,18, 7,25, 2,19,10,26, 5,20,13,14, 8,21, 3,15,11,22, 6,16)$ |
39A1 | $13,3^{4},1$ | $78$ | $39$ | $20$ | $( 1, 4, 5)( 2,13, 8)( 3, 9,11)( 6,10, 7)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ |
39A-1 | $13,3^{4},1$ | $78$ | $39$ | $20$ | $( 1, 5, 4)( 2, 8,13)( 3,11, 9)( 6, 7,10)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
39A2 | $13,3^{4},1$ | $78$ | $39$ | $20$ | $( 1, 5, 4)( 2, 8,13)( 3,11, 9)( 6, 7,10)(14,21,15,22,16,23,17,24,18,25,19,26,20)$ |
39A-2 | $13,3^{4},1$ | $78$ | $39$ | $20$ | $( 1, 4, 5)( 2,13, 8)( 3, 9,11)( 6,10, 7)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
39A4 | $13,3^{4},1$ | $78$ | $39$ | $20$ | $( 1, 4, 5)( 2,13, 8)( 3, 9,11)( 6,10, 7)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
39A-4 | $13,3^{4},1$ | $78$ | $39$ | $20$ | $( 1, 5, 4)( 2, 8,13)( 3,11, 9)( 6, 7,10)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
39A8 | $13,3^{4},1$ | $78$ | $39$ | $20$ | $( 1, 5, 4)( 2, 8,13)( 3,11, 9)( 6, 7,10)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
39A-8 | $13,3^{4},1$ | $78$ | $39$ | $20$ | $( 1, 4, 5)( 2,13, 8)( 3, 9,11)( 6,10, 7)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
Malle's constant $a(G)$: $1/8$
Character table
35 x 35 character table
Regular extensions
Data not computed