Show commands: Magma
Group invariants
Abstract group: | $C_{13}^2:D_6$ |
| |
Order: | $2028=2^{2} \cdot 3 \cdot 13^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $26$ |
| |
Transitive number $t$: | $23$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,11,12,3,6,5)(4,10,8,13,7,9)(14,15,25,21,20,23)(16,22,17,19,26,18)$, $(1,20,12,16,10,25,8,21,6,17,4,26,2,22,13,18,11,14,9,23,7,19,5,15,3,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
39T34 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $39$ | $2$ | $13$ | $( 1,25)( 2,20)( 3,15)( 4,23)( 5,18)( 6,26)( 7,21)( 8,16)( 9,24)(10,19)(11,14)(12,22)(13,17)$ |
2B | $2^{13}$ | $39$ | $2$ | $13$ | $( 1,20)( 2,25)( 3,17)( 4,22)( 5,14)( 6,19)( 7,24)( 8,16)( 9,21)(10,26)(11,18)(12,23)(13,15)$ |
2C | $2^{12},1^{2}$ | $169$ | $2$ | $12$ | $( 1,11)( 2,10)( 3, 9)( 4, 8)( 5, 7)(12,13)(14,20)(15,19)(16,18)(21,26)(22,25)(23,24)$ |
3A | $3^{8},1^{2}$ | $338$ | $3$ | $16$ | $( 1,13, 4)( 2, 9, 7)( 3, 5,10)( 8,11,12)(14,21,16)(15,24,25)(18,20,26)(19,23,22)$ |
6A | $6^{4},1^{2}$ | $338$ | $6$ | $20$ | $( 1, 8,13,11, 4,12)( 2, 5, 9,10, 7, 3)(14,18,21,20,16,26)(15,22,24,19,25,23)$ |
13A1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13A2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13A3 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,21,15,22,16,23,17,24,18,25,19,26,20)$ |
13A4 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,19,24,16,21,26,18,23,15,20,25,17,22)$ |
13A5 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13A6 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13B1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13B2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13B3 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,19,24,16,21,26,18,23,15,20,25,17,22)$ |
13B4 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13B5 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13B6 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ |
13C1 | $13,1^{13}$ | $12$ | $13$ | $12$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)$ |
13C2 | $13,1^{13}$ | $12$ | $13$ | $12$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)$ |
13D1 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13D2 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13D3 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13D4 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ |
13D5 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13D6 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
26A1 | $26$ | $78$ | $26$ | $25$ | $( 1,24, 4,22, 7,20,10,18,13,16, 3,14, 6,25, 9,23,12,21, 2,19, 5,17, 8,15,11,26)$ |
26A3 | $26$ | $78$ | $26$ | $25$ | $( 1,22,10,16, 6,23, 2,17,11,24, 7,18, 3,25,12,19, 8,26, 4,20,13,14, 9,21, 5,15)$ |
26A5 | $26$ | $78$ | $26$ | $25$ | $( 1,20, 3,23, 5,26, 7,16, 9,19,11,22,13,25, 2,15, 4,18, 6,21, 8,24,10,14,12,17)$ |
26A7 | $26$ | $78$ | $26$ | $25$ | $( 1,18, 9,17, 4,16,12,15, 7,14, 2,26,10,25, 5,24,13,23, 8,22, 3,21,11,20, 6,19)$ |
26A9 | $26$ | $78$ | $26$ | $25$ | $( 1,16, 2,24, 3,19, 4,14, 5,22, 6,17, 7,25, 8,20, 9,15,10,23,11,18,12,26,13,21)$ |
26A11 | $26$ | $78$ | $26$ | $25$ | $( 1,14, 8,18, 2,22, 9,26, 3,17,10,21, 4,25,11,16, 5,20,12,24, 6,15,13,19, 7,23)$ |
26B1 | $26$ | $78$ | $26$ | $25$ | $( 1,23,10,16, 6,22, 2,15,11,21, 7,14, 3,20,12,26, 8,19, 4,25,13,18, 9,24, 5,17)$ |
26B3 | $26$ | $78$ | $26$ | $25$ | $( 1,16, 2,21, 3,26, 4,18, 5,23, 6,15, 7,20, 8,25, 9,17,10,22,11,14,12,19,13,24)$ |
26B5 | $26$ | $78$ | $26$ | $25$ | $( 1,22, 7,26,13,17, 6,21,12,25, 5,16,11,20, 4,24,10,15, 3,19, 9,23, 2,14, 8,18)$ |
26B7 | $26$ | $78$ | $26$ | $25$ | $( 1,15,12,18,10,21, 8,24, 6,14, 4,17, 2,20,13,23,11,26, 9,16, 7,19, 5,22, 3,25)$ |
26B9 | $26$ | $78$ | $26$ | $25$ | $( 1,21, 4,23, 7,25,10,14,13,16, 3,18, 6,20, 9,22,12,24, 2,26, 5,15, 8,17,11,19)$ |
26B11 | $26$ | $78$ | $26$ | $25$ | $( 1,14, 9,15, 4,16,12,17, 7,18, 2,19,10,20, 5,21,13,22, 8,23, 3,24,11,25, 6,26)$ |
Malle's constant $a(G)$: $1/12$
Character table
38 x 38 character table
Regular extensions
Data not computed