Show commands:
Magma
magma: G := TransitiveGroup(26, 21);
Group invariants
Abstract group: | $C_{13}:F_{13}$ | magma: IdentifyGroup(G);
| |
Order: | $2028=2^{2} \cdot 3 \cdot 13^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $21$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,15,2,21)(3,14,13,22)(4,20,12,16)(5,26,11,23)(6,19,10,17)(7,25,9,24)(8,18)$, $(1,4,3,12,9,10)(2,8,6,11,5,7)(14,26,22,19,20,24)(15,17,25,18,16,21)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $4$: $C_4$ $6$: $C_6$ $12$: $C_{12}$ $156$: $F_{13}$ x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
26T21 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{2}$ | $169$ | $2$ | $12$ | $( 1, 2)( 3,13)( 4,12)( 5,11)( 6,10)( 7, 9)(14,22)(15,21)(16,20)(17,19)(23,26)(24,25)$ |
3A1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1, 4,13)( 2, 7, 9)( 3,10, 5)( 8,12,11)(14,19,21)(15,22,17)(16,25,26)(20,24,23)$ |
3A-1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1,13, 4)( 2, 9, 7)( 3, 5,10)( 8,11,12)(14,21,19)(15,17,22)(16,26,25)(20,23,24)$ |
4A1 | $4^{6},2$ | $169$ | $4$ | $19$ | $( 1,21, 2,15)( 3,22,13,14)( 4,16,12,20)( 5,23,11,26)( 6,17,10,19)( 7,24, 9,25)( 8,18)$ |
4A-1 | $4^{6},2$ | $169$ | $4$ | $19$ | $( 1,15, 2,21)( 3,14,13,22)( 4,20,12,16)( 5,26,11,23)( 6,19,10,17)( 7,25, 9,24)( 8,18)$ |
6A1 | $6^{4},1^{2}$ | $169$ | $6$ | $20$ | $( 1,12, 4,11,13, 8)( 2, 3, 7,10, 9, 5)(14,15,19,22,21,17)(16,23,25,20,26,24)$ |
6A-1 | $6^{4},1^{2}$ | $169$ | $6$ | $20$ | $( 1, 8,13,11, 4,12)( 2, 5, 9,10, 7, 3)(14,17,21,22,19,15)(16,24,26,20,25,23)$ |
12A1 | $12^{2},2$ | $169$ | $12$ | $23$ | $( 1,17,12,14, 4,15,11,19,13,22, 8,21)( 2,25, 3,20, 7,26,10,24, 9,16, 5,23)( 6,18)$ |
12A-1 | $12^{2},2$ | $169$ | $12$ | $23$ | $( 1,19,12,22, 4,21,11,17,13,14, 8,15)( 2,24, 3,16, 7,23,10,25, 9,20, 5,26)( 6,18)$ |
12A5 | $12^{2},2$ | $169$ | $12$ | $23$ | $( 1,21, 8,22,13,19,11,15, 4,14,12,17)( 2,23, 5,16, 9,24,10,26, 7,20, 3,25)( 6,18)$ |
12A-5 | $12^{2},2$ | $169$ | $12$ | $23$ | $( 1,15, 8,14,13,17,11,21, 4,22,12,19)( 2,26, 5,20, 9,25,10,23, 7,16, 3,24)( 6,18)$ |
13A | $13,1^{13}$ | $12$ | $13$ | $12$ | $(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13B | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,19,24,16,21,26,18,23,15,20,25,17,22)$ |
13C1 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13C2 | $13,1^{13}$ | $12$ | $13$ | $12$ | $(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13D1 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13D2 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,22,17,25,20,15,23,18,26,21,16,24,19)$ |
13E1 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13E2 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13F1 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13F2 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13G1 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,22,17,25,20,15,23,18,26,21,16,24,19)$ |
13G2 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13H1 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13H2 | $13^{2}$ | $12$ | $13$ | $24$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A1 | 3A-1 | 4A1 | 4A-1 | 6A1 | 6A-1 | 12A1 | 12A-1 | 12A5 | 12A-5 | 13A | 13B | 13C1 | 13C2 | 13D1 | 13D2 | 13E1 | 13E2 | 13F1 | 13F2 | 13G1 | 13G2 | 13H1 | 13H2 | ||
Size | 1 | 169 | 169 | 169 | 169 | 169 | 169 | 169 | 169 | 169 | 169 | 169 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | |
2 P | 1A | 1A | 3A-1 | 3A1 | 2A | 2A | 3A1 | 3A-1 | 6A1 | 6A1 | 6A-1 | 6A-1 | 13F2 | 13A | 13B | 13F1 | 13H1 | 13H2 | 13C2 | 13C1 | 13D2 | 13D1 | 13G1 | 13E2 | 13E1 | 13G2 | |
3 P | 1A | 2A | 1A | 1A | 4A-1 | 4A1 | 2A | 2A | 4A-1 | 4A1 | 4A1 | 4A-1 | 13F1 | 13A | 13B | 13F2 | 13H2 | 13H1 | 13C1 | 13C2 | 13D1 | 13D2 | 13G2 | 13E1 | 13E2 | 13G1 | |
13 P | 1A | 2A | 3A1 | 3A-1 | 4A1 | 4A-1 | 6A1 | 6A-1 | 12A-5 | 12A1 | 12A5 | 12A-1 | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | |
Type |
magma: CharacterTable(G);
Regular extensions
Data not computed