Show commands:
Magma
magma: G := TransitiveGroup(26, 2);
Group invariants
Abstract group: | $D_{13}$ | magma: IdentifyGroup(G);
| |
Order: | $26=2 \cdot 13$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $2$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $26$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,23)(2,24)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,26)$, $(1,4,6,8,10,12,14,16,18,20,22,24,25)(2,3,5,7,9,11,13,15,17,19,21,23,26)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: $D_{13}$
Low degree siblings
13T2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $13$ | $2$ | $13$ | $( 1,23)( 2,24)( 3,22)( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,14)(12,13)(25,26)$ |
13A1 | $13^{2}$ | $2$ | $13$ | $24$ | $( 1, 4, 6, 8,10,12,14,16,18,20,22,24,25)( 2, 3, 5, 7, 9,11,13,15,17,19,21,23,26)$ |
13A2 | $13^{2}$ | $2$ | $13$ | $24$ | $( 1,22,16,10, 4,24,18,12, 6,25,20,14, 8)( 2,21,15, 9, 3,23,17,11, 5,26,19,13, 7)$ |
13A3 | $13^{2}$ | $2$ | $13$ | $24$ | $( 1,14,25,12,24,10,22, 8,20, 6,18, 4,16)( 2,13,26,11,23, 9,21, 7,19, 5,17, 3,15)$ |
13A4 | $13^{2}$ | $2$ | $13$ | $24$ | $( 1, 6,10,14,18,22,25, 4, 8,12,16,20,24)( 2, 5, 9,13,17,21,26, 3, 7,11,15,19,23)$ |
13A5 | $13^{2}$ | $2$ | $13$ | $24$ | $( 1,20,12, 4,22,14, 6,24,16, 8,25,18,10)( 2,19,11, 3,21,13, 5,23,15, 7,26,17, 9)$ |
13A6 | $13^{2}$ | $2$ | $13$ | $24$ | $( 1,12,22, 6,16,25,10,20, 4,14,24, 8,18)( 2,11,21, 5,15,26, 9,19, 3,13,23, 7,17)$ |
Malle's constant $a(G)$: $1/13$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 13A1 | 13A2 | 13A3 | 13A4 | 13A5 | 13A6 | ||
Size | 1 | 13 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 13A6 | 13A5 | 13A3 | 13A1 | 13A2 | 13A4 | |
13 P | 1A | 2A | 13A4 | 13A1 | 13A2 | 13A5 | 13A3 | 13A6 | |
Type | |||||||||
26.1.1a | R | ||||||||
26.1.1b | R | ||||||||
26.1.2a1 | R | ||||||||
26.1.2a2 | R | ||||||||
26.1.2a3 | R | ||||||||
26.1.2a4 | R | ||||||||
26.1.2a5 | R | ||||||||
26.1.2a6 | R |
magma: CharacterTable(G);
Regular extensions
Data not computed