Properties

Label 26T2
Degree $26$
Order $26$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $D_{13}$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(26, 2);
 

Group invariants

Abstract group:  $D_{13}$
magma: IdentifyGroup(G);
 
Order:  $26=2 \cdot 13$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  yes
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $26$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $26$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,23)(2,24)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,26)$, $(1,4,6,8,10,12,14,16,18,20,22,24,25)(2,3,5,7,9,11,13,15,17,19,21,23,26)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 13: $D_{13}$

Low degree siblings

13T2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{26}$ $1$ $1$ $0$ $()$
2A $2^{13}$ $13$ $2$ $13$ $( 1,23)( 2,24)( 3,22)( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,14)(12,13)(25,26)$
13A1 $13^{2}$ $2$ $13$ $24$ $( 1, 4, 6, 8,10,12,14,16,18,20,22,24,25)( 2, 3, 5, 7, 9,11,13,15,17,19,21,23,26)$
13A2 $13^{2}$ $2$ $13$ $24$ $( 1,22,16,10, 4,24,18,12, 6,25,20,14, 8)( 2,21,15, 9, 3,23,17,11, 5,26,19,13, 7)$
13A3 $13^{2}$ $2$ $13$ $24$ $( 1,14,25,12,24,10,22, 8,20, 6,18, 4,16)( 2,13,26,11,23, 9,21, 7,19, 5,17, 3,15)$
13A4 $13^{2}$ $2$ $13$ $24$ $( 1, 6,10,14,18,22,25, 4, 8,12,16,20,24)( 2, 5, 9,13,17,21,26, 3, 7,11,15,19,23)$
13A5 $13^{2}$ $2$ $13$ $24$ $( 1,20,12, 4,22,14, 6,24,16, 8,25,18,10)( 2,19,11, 3,21,13, 5,23,15, 7,26,17, 9)$
13A6 $13^{2}$ $2$ $13$ $24$ $( 1,12,22, 6,16,25,10,20, 4,14,24, 8,18)( 2,11,21, 5,15,26, 9,19, 3,13,23, 7,17)$

Malle's constant $a(G)$:     $1/13$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 13A1 13A2 13A3 13A4 13A5 13A6
Size 1 13 2 2 2 2 2 2
2 P 1A 1A 13A6 13A5 13A3 13A1 13A2 13A4
13 P 1A 2A 13A4 13A1 13A2 13A5 13A3 13A6
Type
26.1.1a R 1 1 1 1 1 1 1 1
26.1.1b R 1 1 1 1 1 1 1 1
26.1.2a1 R 2 0 ζ136+ζ136 ζ131+ζ13 ζ135+ζ135 ζ132+ζ132 ζ134+ζ134 ζ133+ζ133
26.1.2a2 R 2 0 ζ135+ζ135 ζ133+ζ133 ζ132+ζ132 ζ136+ζ136 ζ131+ζ13 ζ134+ζ134
26.1.2a3 R 2 0 ζ134+ζ134 ζ135+ζ135 ζ131+ζ13 ζ133+ζ133 ζ136+ζ136 ζ132+ζ132
26.1.2a4 R 2 0 ζ133+ζ133 ζ136+ζ136 ζ134+ζ134 ζ131+ζ13 ζ132+ζ132 ζ135+ζ135
26.1.2a5 R 2 0 ζ132+ζ132 ζ134+ζ134 ζ136+ζ136 ζ135+ζ135 ζ133+ζ133 ζ131+ζ13
26.1.2a6 R 2 0 ζ131+ζ13 ζ132+ζ132 ζ133+ζ133 ζ134+ζ134 ζ135+ζ135 ζ136+ζ136

magma: CharacterTable(G);
 

Regular extensions

Data not computed