Show commands: Magma
Group invariants
Abstract group: | $D_{13}^2.C_2$ |
| |
Order: | $1352=2^{3} \cdot 13^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $26$ |
| |
Transitive number $t$: | $18$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,13)(2,12)(3,11)(4,10)(5,9)(6,8)(14,15)(16,26)(17,25)(18,24)(19,23)(20,22)$, $(1,22,7,18)(2,17,6,23)(3,25,5,15)(4,20)(8,26,13,14)(9,21,12,19)(10,16,11,24)$, $(1,12,2,4)(3,9,13,7)(5,6,11,10)(14,19,18,26)(15,24,17,21)(20,23,25,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $52$: $C_{13}:C_4$ x 2 $104$: 26T7 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
26T18 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $13$ | $2$ | $13$ | $( 1,16)( 2,17)( 3,18)( 4,19)( 5,20)( 6,21)( 7,22)( 8,23)( 9,24)(10,25)(11,26)(12,14)(13,15)$ |
2B | $2^{13}$ | $13$ | $2$ | $13$ | $( 1,21)( 2,20)( 3,19)( 4,18)( 5,17)( 6,16)( 7,15)( 8,14)( 9,26)(10,25)(11,24)(12,23)(13,22)$ |
2C | $2^{12},1^{2}$ | $169$ | $2$ | $12$ | $( 1, 5)( 2, 4)( 6,13)( 7,12)( 8,11)( 9,10)(14,23)(15,22)(16,21)(17,20)(18,19)(24,26)$ |
4A1 | $4^{6},1^{2}$ | $169$ | $4$ | $18$ | $( 1, 6, 5,13)( 2,11, 4, 8)( 7,10,12, 9)(14,22,23,15)(16,19,21,18)(17,24,20,26)$ |
4A-1 | $4^{6},1^{2}$ | $169$ | $4$ | $18$ | $( 1,13, 5, 6)( 2, 8, 4,11)( 7, 9,12,10)(14,15,23,22)(16,18,21,19)(17,26,20,24)$ |
4B1 | $4^{6},2$ | $169$ | $4$ | $19$ | $( 1,23, 7,19)( 2,18, 6,24)( 3,26, 5,16)( 4,21)( 8,14,13,15)( 9,22,12,20)(10,17,11,25)$ |
4B-1 | $4^{6},2$ | $169$ | $4$ | $19$ | $( 1,19, 7,23)( 2,24, 6,18)( 3,16, 5,26)( 4,21)( 8,15,13,14)( 9,20,12,22)(10,25,11,17)$ |
13A1 | $13^{2}$ | $4$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13A2 | $13^{2}$ | $4$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,19,24,16,21,26,18,23,15,20,25,17,22)$ |
13A4 | $13^{2}$ | $4$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ |
13B1 | $13^{2}$ | $4$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13B2 | $13^{2}$ | $4$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
13B4 | $13^{2}$ | $4$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13C1 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13C2 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,22,17,25,20,15,23,18,26,21,16,24,19)$ |
13C4 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13D1 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13D2 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13D4 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13E1 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13E2 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,19,24,16,21,26,18,23,15,20,25,17,22)$ |
13E4 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13F1 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
13F2 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13F4 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13G1 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13G2 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13G4 | $13^{2}$ | $8$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13H1 | $13,1^{13}$ | $8$ | $13$ | $12$ | $(14,21,15,22,16,23,17,24,18,25,19,26,20)$ |
13H2 | $13,1^{13}$ | $8$ | $13$ | $12$ | $(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13H4 | $13,1^{13}$ | $8$ | $13$ | $12$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)$ |
26A1 | $26$ | $52$ | $26$ | $25$ | $( 1,14,10,23, 6,19, 2,15,11,24, 7,20, 3,16,12,25, 8,21, 4,17,13,26, 9,22, 5,18)$ |
26A3 | $26$ | $52$ | $26$ | $25$ | $( 1,23, 2,24, 3,25, 4,26, 5,14, 6,15, 7,16, 8,17, 9,18,10,19,11,20,12,21,13,22)$ |
26A7 | $26$ | $52$ | $26$ | $25$ | $( 1,15,12,26,10,24, 8,22, 6,20, 4,18, 2,16,13,14,11,25, 9,23, 7,21, 5,19, 3,17)$ |
26B1 | $26$ | $52$ | $26$ | $25$ | $( 1,15,13,16,12,17,11,18,10,19, 9,20, 8,21, 7,22, 6,23, 5,24, 4,25, 3,26, 2,14)$ |
26B3 | $26$ | $52$ | $26$ | $25$ | $( 1,16,11,19, 8,22, 5,25, 2,15,12,18, 9,21, 6,24, 3,14,13,17,10,20, 7,23, 4,26)$ |
26B7 | $26$ | $52$ | $26$ | $25$ | $( 1,18, 7,25,13,19, 6,26,12,20, 5,14,11,21, 4,15,10,22, 3,16, 9,23, 2,17, 8,24)$ |
Malle's constant $a(G)$: $1/12$
Character table
38 x 38 character table
Regular extensions
Data not computed