Show commands:
Magma
magma: G := TransitiveGroup(26, 15);
Group invariants
Abstract group: | $C_{13}^2:C_6$ | magma: IdentifyGroup(G);
| |
Order: | $1014=2 \cdot 3 \cdot 13^{2}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $26$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $15$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,23,3,25,9,18)(2,24,6,15,5,14)(4,26,12,21,10,19)(7,16,8,17,11,20)(13,22)$, $(1,24,2,14,3,17,4,20,5,23,6,26,7,16,8,19,9,22,10,25,11,15,12,18,13,21)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $C_6$ $39$: $C_{13}:C_3$ $78$: $C_{13}:C_6$, 26T5 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 13: None
Low degree siblings
26T15 x 5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{26}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{13}$ | $13$ | $2$ | $13$ | $( 1,17)( 2,20)( 3,23)( 4,26)( 5,16)( 6,19)( 7,22)( 8,25)( 9,15)(10,18)(11,21)(12,24)(13,14)$ |
3A1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1, 2, 5)( 3, 8,10)( 4,11, 6)( 9,13,12)(14,24,15)(16,17,20)(18,23,25)(19,26,21)$ |
3A-1 | $3^{8},1^{2}$ | $169$ | $3$ | $16$ | $( 1, 5, 2)( 3,10, 8)( 4, 6,11)( 9,12,13)(14,15,24)(16,20,17)(18,25,23)(19,21,26)$ |
6A1 | $6^{4},2$ | $169$ | $6$ | $21$ | $( 1,16, 2,17, 5,20)( 3,18, 8,23,10,25)( 4,19,11,26, 6,21)( 7,22)( 9,24,13,15,12,14)$ |
6A-1 | $6^{4},2$ | $169$ | $6$ | $21$ | $( 1,20, 5,17, 2,16)( 3,25,10,23, 8,18)( 4,21, 6,26,11,19)( 7,22)( 9,14,12,15,13,24)$ |
13A1 | $13^{2}$ | $3$ | $13$ | $24$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13A-1 | $13^{2}$ | $3$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13A2 | $13^{2}$ | $3$ | $13$ | $24$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13A-2 | $13^{2}$ | $3$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
13B1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,10, 6, 2,11, 7, 3,12, 8, 4,13, 9, 5)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13B2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13C1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
13C-1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13C2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13C-2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13D1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,19,24,16,21,26,18,23,15,20,25,17,22)$ |
13D-1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,12,10, 8, 6, 4, 2,13,11, 9, 7, 5, 3)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ |
13D2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,24,21,18,15,25,22,19,16,26,23,20,17)$ |
13D-2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13E1 | $13,1^{13}$ | $6$ | $13$ | $12$ | $( 1, 6,11, 3, 8,13, 5,10, 2, 7,12, 4, 9)$ |
13E-1 | $13,1^{13}$ | $6$ | $13$ | $12$ | $(14,21,15,22,16,23,17,24,18,25,19,26,20)$ |
13E2 | $13,1^{13}$ | $6$ | $13$ | $12$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)$ |
13E-2 | $13,1^{13}$ | $6$ | $13$ | $12$ | $(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13F1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,18,22,26,17,21,25,16,20,24,15,19,23)$ |
13F-1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13)(14,15,16,17,18,19,20,21,22,23,24,25,26)$ |
13F2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 9, 4,12, 7, 2,10, 5,13, 8, 3,11, 6)(14,21,15,22,16,23,17,24,18,25,19,26,20)$ |
13F-2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,16,18,20,22,24,26,15,17,19,21,23,25)$ |
13G1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 4, 7,10,13, 3, 6, 9,12, 2, 5, 8,11)(14,21,15,22,16,23,17,24,18,25,19,26,20)$ |
13G-1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,26,25,24,23,22,21,20,19,18,17,16,15)$ |
13G2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 3, 5, 7, 9,11,13, 2, 4, 6, 8,10,12)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13G-2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 5, 9,13, 4, 8,12, 3, 7,11, 2, 6,10)(14,22,17,25,20,15,23,18,26,21,16,24,19)$ |
13H1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,11, 8, 5, 2,12, 9, 6, 3,13,10, 7, 4)(14,25,23,21,19,17,15,26,24,22,20,18,16)$ |
13H-1 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 7,13, 6,12, 5,11, 4,10, 3, 9, 2, 8)(14,17,20,23,26,16,19,22,25,15,18,21,24)$ |
13H2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1, 8, 2, 9, 3,10, 4,11, 5,12, 6,13, 7)(14,23,19,15,24,20,16,25,21,17,26,22,18)$ |
13H-2 | $13^{2}$ | $6$ | $13$ | $24$ | $( 1,13,12,11,10, 9, 8, 7, 6, 5, 4, 3, 2)(14,20,26,19,25,18,24,17,23,16,22,15,21)$ |
26A1 | $26$ | $39$ | $26$ | $25$ | $( 1,16, 5,15, 9,14,13,26, 4,25, 8,24,12,23, 3,22, 7,21,11,20, 2,19, 6,18,10,17)$ |
26A-1 | $26$ | $39$ | $26$ | $25$ | $( 1,17,10,18, 6,19, 2,20,11,21, 7,22, 3,23,12,24, 8,25, 4,26,13,14, 9,15, 5,16)$ |
26A5 | $26$ | $39$ | $26$ | $25$ | $( 1,14, 8,22, 2,17, 9,25, 3,20,10,15, 4,23,11,18, 5,26,12,21, 6,16,13,24, 7,19)$ |
26A-5 | $26$ | $39$ | $26$ | $25$ | $( 1,19, 7,24,13,16, 6,21,12,26, 5,18,11,23, 4,15,10,20, 3,25, 9,17, 2,22, 8,14)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Character table
40 x 40 character tablemagma: CharacterTable(G);
Regular extensions
Data not computed