Show commands: Magma
Group invariants
Abstract group: | $\PSL(2,7)$ |
| |
Order: | $168=2^{3} \cdot 3 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $284$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $3$ |
| |
Generators: | $(1,8,24,21,17,10,13)(2,9,22,19,18,11,14)(3,7,23,20,16,12,15)$, $(1,7,12,13,22,5,18)(2,8,10,14,23,6,16)(3,9,11,15,24,4,17)$ |
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 4: None
Degree 6: None
Degree 8: $\PSL(2,7)$
Degree 12: None
Low degree siblings
7T5 x 2, 8T37, 14T10 x 2, 21T14, 28T32, 42T37, 42T38 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $21$ | $2$ | $12$ | $( 1, 9)( 2, 7)( 3, 8)( 4,21)( 5,19)( 6,20)(10,15)(11,13)(12,14)(16,23)(17,24)(18,22)$ |
3A | $3^{8}$ | $56$ | $3$ | $16$ | $( 1,17, 5)( 2,18, 6)( 3,16, 4)( 7,20,22)( 8,21,23)( 9,19,24)(10,12,11)(13,14,15)$ |
4A | $4^{6}$ | $42$ | $4$ | $18$ | $( 1,11, 9,13)( 2,12, 7,14)( 3,10, 8,15)( 4,16,21,23)( 5,17,19,24)( 6,18,20,22)$ |
7A1 | $7^{3},1^{3}$ | $24$ | $7$ | $18$ | $( 1, 7,14,11,20,17, 6)( 2, 8,15,12,21,18, 4)( 3, 9,13,10,19,16, 5)$ |
7A-1 | $7^{3},1^{3}$ | $24$ | $7$ | $18$ | $( 1, 6,17,20,11,14, 7)( 2, 4,18,21,12,15, 8)( 3, 5,16,19,10,13, 9)$ |
Malle's constant $a(G)$: $1/12$
Character table
1A | 2A | 3A | 4A | 7A1 | 7A-1 | ||
Size | 1 | 21 | 56 | 42 | 24 | 24 | |
2 P | 1A | 1A | 3A | 2A | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 4A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A | 4A | 1A | 1A | |
Type | |||||||
168.42.1a | R | ||||||
168.42.3a1 | C | ||||||
168.42.3a2 | C | ||||||
168.42.6a | R | ||||||
168.42.7a | R | ||||||
168.42.8a | R |
Regular extensions
Data not computed