Properties

Label 24T202
Degree $24$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $S_5$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(24, 202);
 

Group invariants

Abstract group:  $S_5$
magma: IdentifyGroup(G);
 
Order:  $120=2^{3} \cdot 3 \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
magma: NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $202$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $4$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,3)(2,4)(5,9)(6,10)(7,13)(8,14)(11,19)(12,20)(15,17)(16,18)(21,23)(22,24)$, $(3,17,11,7,5)(4,18,12,8,6)(9,14,22,20,15)(10,13,21,19,16)$
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: None

Degree 6: $\PGL(2,5)$

Degree 8: None

Degree 12: $S_5$

Low degree siblings

5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 30T22, 30T25, 30T27, 40T62

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{24}$ $1$ $1$ $0$ $()$
2A $2^{12}$ $10$ $2$ $12$ $( 1,18)( 2,17)( 3,10)( 4, 9)( 5,15)( 6,16)( 7,22)( 8,21)(11,13)(12,14)(19,24)(20,23)$
2B $2^{12}$ $15$ $2$ $12$ $( 1,15)( 2,16)( 3, 5)( 4, 6)( 7, 8)( 9,10)(11,23)(12,24)(13,21)(14,22)(17,18)(19,20)$
3A $3^{8}$ $20$ $3$ $16$ $( 1,13,10)( 2,14, 9)( 3,18,11)( 4,17,12)( 5, 7,24)( 6, 8,23)(15,22,19)(16,21,20)$
4A $4^{6}$ $30$ $4$ $18$ $( 1, 3,15, 5)( 2, 4,16, 6)( 7, 9, 8,10)(11,13,23,21)(12,14,24,22)(17,19,18,20)$
5A $5^{4},1^{4}$ $24$ $5$ $16$ $( 1,13,15, 9,19)( 2,14,16,10,20)( 5,12, 8,17,24)( 6,11, 7,18,23)$
6A $6^{4}$ $20$ $6$ $20$ $( 1, 3,13,18,10,11)( 2, 4,14,17, 9,12)( 5,19, 7,15,24,22)( 6,20, 8,16,23,21)$

Malle's constant $a(G)$:     $1/12$

magma: ConjugacyClasses(G);
 

Character table

1A 2A 2B 3A 4A 5A 6A
Size 1 10 15 20 30 24 20
2 P 1A 1A 1A 3A 2B 5A 3A
3 P 1A 2A 2B 1A 4A 5A 2A
5 P 1A 2A 2B 3A 4A 1A 6A
Type
120.34.1a R 1 1 1 1 1 1 1
120.34.1b R 1 1 1 1 1 1 1
120.34.4a R 4 2 0 1 0 1 1
120.34.4b R 4 2 0 1 0 1 1
120.34.5a R 5 1 1 1 1 0 1
120.34.5b R 5 1 1 1 1 0 1
120.34.6a R 6 0 2 0 0 1 0

magma: CharacterTable(G);
 

Regular extensions

Data not computed