Show commands:
Magma
magma: G := TransitiveGroup(24, 202);
Group invariants
Abstract group: | $S_5$ | magma: IdentifyGroup(G);
| |
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $24$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $202$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $4$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,3)(2,4)(5,9)(6,10)(7,13)(8,14)(11,19)(12,20)(15,17)(16,18)(21,23)(22,24)$, $(3,17,11,7,5)(4,18,12,8,6)(9,14,22,20,15)(10,13,21,19,16)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $\PGL(2,5)$
Degree 8: None
Degree 12: $S_5$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 30T22, 30T25, 30T27, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $10$ | $2$ | $12$ | $( 1,18)( 2,17)( 3,10)( 4, 9)( 5,15)( 6,16)( 7,22)( 8,21)(11,13)(12,14)(19,24)(20,23)$ |
2B | $2^{12}$ | $15$ | $2$ | $12$ | $( 1,15)( 2,16)( 3, 5)( 4, 6)( 7, 8)( 9,10)(11,23)(12,24)(13,21)(14,22)(17,18)(19,20)$ |
3A | $3^{8}$ | $20$ | $3$ | $16$ | $( 1,13,10)( 2,14, 9)( 3,18,11)( 4,17,12)( 5, 7,24)( 6, 8,23)(15,22,19)(16,21,20)$ |
4A | $4^{6}$ | $30$ | $4$ | $18$ | $( 1, 3,15, 5)( 2, 4,16, 6)( 7, 9, 8,10)(11,13,23,21)(12,14,24,22)(17,19,18,20)$ |
5A | $5^{4},1^{4}$ | $24$ | $5$ | $16$ | $( 1,13,15, 9,19)( 2,14,16,10,20)( 5,12, 8,17,24)( 6,11, 7,18,23)$ |
6A | $6^{4}$ | $20$ | $6$ | $20$ | $( 1, 3,13,18,10,11)( 2, 4,14,17, 9,12)( 5,19, 7,15,24,22)( 6,20, 8,16,23,21)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 2B | 3A | 4A | 5A | 6A | ||
Size | 1 | 10 | 15 | 20 | 30 | 24 | 20 | |
2 P | 1A | 1A | 1A | 3A | 2B | 5A | 3A | |
3 P | 1A | 2A | 2B | 1A | 4A | 5A | 2A | |
5 P | 1A | 2A | 2B | 3A | 4A | 1A | 6A | |
Type | ||||||||
120.34.1a | R | |||||||
120.34.1b | R | |||||||
120.34.4a | R | |||||||
120.34.4b | R | |||||||
120.34.5a | R | |||||||
120.34.5b | R | |||||||
120.34.6a | R |
magma: CharacterTable(G);
Regular extensions
Data not computed