Show commands: Magma
Group invariants
| Abstract group: | $C_7^3:S_4$ |
| |
| Order: | $8232=2^{3} \cdot 3 \cdot 7^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $21$ |
| |
| Transitive number $t$: | $46$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,8,20,7,11,18,6,14,16,5,10,21,4,13,19,3,9,17,2,12,15)$, $(1,5)(2,4)(6,7)(8,16,9,19)(10,15,14,20)(11,18,13,17)(12,21)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $24$: $S_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 7: None
Low degree siblings
28T347, 42T538, 42T539, 42T540, 42T548Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
70 x 70 character table
Regular extensions
Data not computed