Show commands:
Magma
magma: G := TransitiveGroup(21, 43);
Group invariants
Abstract group: | $C_7^3:(C_3\times C_6)$ | magma: IdentifyGroup(G);
| |
Order: | $6174=2 \cdot 3^{2} \cdot 7^{3}$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $21$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $43$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $-1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,12,17,4,14,15)(2,8,21,3,11,18)(5,10,19,7,9,20)(6,13,16)$, $(1,10,16,5,14,17,2,11,18,6,8,19,3,12,20,7,9,21,4,13,15)$ | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ x 4 $6$: $C_6$ x 4 $9$: $C_3^2$ $18$: $C_6 \times C_3$ $42$: $F_7$ x 3 $126$: 21T9 x 3 $882$: 21T24 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$
Degree 7: None
Low degree siblings
21T43 x 11, 42T467 x 12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{9},1^{3}$ | $343$ | $2$ | $9$ | $( 2, 7)( 3, 6)( 4, 5)( 8,14)( 9,13)(10,12)(16,21)(17,20)(18,19)$ |
3A1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1,15,11)( 2,19, 8)( 3,16,12)( 4,20, 9)( 5,17,13)( 6,21,10)( 7,18,14)$ |
3A-1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1,11,15)( 2, 8,19)( 3,12,16)( 4, 9,20)( 5,13,17)( 6,10,21)( 7,14,18)$ |
3B1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1,15,10)( 2,16,12)( 3,17,14)( 4,18, 9)( 5,19,11)( 6,20,13)( 7,21, 8)$ |
3B-1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1,10,15)( 2,12,16)( 3,14,17)( 4, 9,18)( 5,11,19)( 6,13,20)( 7, 8,21)$ |
3C1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1,16, 8)( 2,18, 9)( 3,20,10)( 4,15,11)( 5,17,12)( 6,19,13)( 7,21,14)$ |
3C-1 | $3^{7}$ | $49$ | $3$ | $14$ | $( 1, 8,16)( 2, 9,18)( 3,10,20)( 4,11,15)( 5,12,17)( 6,13,19)( 7,14,21)$ |
3D1 | $3^{6},1^{3}$ | $343$ | $3$ | $12$ | $( 1, 4, 3)( 2, 6, 7)( 8, 9,11)(10,13,12)(15,21,19)(17,18,20)$ |
3D-1 | $3^{6},1^{3}$ | $343$ | $3$ | $12$ | $( 1, 3, 4)( 2, 7, 6)( 8,11, 9)(10,12,13)(15,19,21)(17,20,18)$ |
6A1 | $6^{3},3$ | $343$ | $6$ | $17$ | $( 1,11,15)( 2,14,19, 7, 8,18)( 3,10,16, 6,12,21)( 4,13,20, 5, 9,17)$ |
6A-1 | $6^{3},3$ | $343$ | $6$ | $17$ | $( 1,15,11)( 2,18, 8, 7,19,14)( 3,21,12, 6,16,10)( 4,17, 9, 5,20,13)$ |
6B1 | $6^{3},3$ | $343$ | $6$ | $17$ | $( 1,12,20)( 2,11,15, 7,13,18)( 3,10,17, 6,14,16)( 4, 9,19, 5, 8,21)$ |
6B-1 | $6^{3},3$ | $343$ | $6$ | $17$ | $( 1,20,12)( 2,18,13, 7,15,11)( 3,16,14, 6,17,10)( 4,21, 8, 5,19, 9)$ |
6C1 | $6^{3},3$ | $343$ | $6$ | $17$ | $( 1,16,11, 3,21, 8)( 2,15,13)( 4,20,10, 7,17, 9)( 5,19,12, 6,18,14)$ |
6C-1 | $6^{3},3$ | $343$ | $6$ | $17$ | $( 1, 8,21, 3,11,16)( 2,13,15)( 4, 9,17, 7,10,20)( 5,14,18, 6,12,19)$ |
6D1 | $6^{3},1^{3}$ | $343$ | $6$ | $15$ | $( 1, 7, 4, 2, 3, 6)( 8,10, 9,13,11,12)(15,20,21,17,19,18)$ |
6D-1 | $6^{3},1^{3}$ | $343$ | $6$ | $15$ | $( 1, 6, 3, 2, 4, 7)( 8,12,11,13, 9,10)(15,18,19,17,21,20)$ |
7A | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,14,13,12,11,10, 9)(15,18,21,17,20,16,19)$ |
7B | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,10,12,14, 9,11,13)(15,19,16,20,17,21,18)$ |
7C | $7^{3}$ | $6$ | $7$ | $18$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,12, 9,13,10,14,11)(15,19,16,20,17,21,18)$ |
7D | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,10,12,14, 9,11,13)(15,19,16,20,17,21,18)$ |
7E | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,12, 9,13,10,14,11)$ |
7F | $7,1^{14}$ | $18$ | $7$ | $6$ | $(1,2,3,4,5,6,7)$ |
7G | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 2, 3, 4, 5, 6, 7)( 8,10,12,14, 9,11,13)(15,18,21,17,20,16,19)$ |
7H | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,10,12,14, 9,11,13)(15,19,16,20,17,21,18)$ |
7I | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,14,13,12,11,10, 9)(15,18,21,17,20,16,19)$ |
7J | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 7, 6, 5, 4, 3, 2)( 8,13,11, 9,14,12,10)(15,18,21,17,20,16,19)$ |
7K | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 1, 7, 6, 5, 4, 3, 2)(15,21,20,19,18,17,16)$ |
7L | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 8,12, 9,13,10,14,11)(15,16,17,18,19,20,21)$ |
7M | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 8,11,14,10,13, 9,12)(15,18,21,17,20,16,19)$ |
7N | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,11,14,10,13, 9,12)(15,21,20,19,18,17,16)$ |
7O | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 5, 2, 6, 3, 7, 4)( 8,13,11, 9,14,12,10)(15,17,19,21,16,18,20)$ |
7P | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8,11,14,10,13, 9,12)(15,21,20,19,18,17,16)$ |
7Q | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 3, 5, 7, 2, 4, 6)( 8, 9,10,11,12,13,14)(15,18,21,17,20,16,19)$ |
7R | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 8,14,13,12,11,10, 9)(15,19,16,20,17,21,18)$ |
7S | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8, 9,10,11,12,13,14)(15,16,17,18,19,20,21)$ |
7T | $7^{2},1^{7}$ | $18$ | $7$ | $12$ | $( 1, 7, 6, 5, 4, 3, 2)(15,19,16,20,17,21,18)$ |
7U | $7^{3}$ | $18$ | $7$ | $18$ | $( 1, 4, 7, 3, 6, 2, 5)( 8,10,12,14, 9,11,13)(15,18,21,17,20,16,19)$ |
21A1 | $21$ | $294$ | $21$ | $20$ | $( 1,16,14, 4,19,13, 7,15,12, 3,18,11, 6,21,10, 2,17, 9, 5,20, 8)$ |
21A-1 | $21$ | $294$ | $21$ | $20$ | $( 1, 8,20, 5, 9,17, 2,10,21, 6,11,18, 3,12,15, 7,13,19, 4,14,16)$ |
21B1 | $21$ | $294$ | $21$ | $20$ | $( 1,15,14, 3,19, 9, 5,16,11, 7,20,13, 2,17, 8, 4,21,10, 6,18,12)$ |
21B-1 | $21$ | $294$ | $21$ | $20$ | $( 1,12,18, 6,10,21, 4, 8,17, 2,13,20, 7,11,16, 5, 9,19, 3,14,15)$ |
21C1 | $21$ | $294$ | $21$ | $20$ | $( 1, 8,19, 2,12,16, 3, 9,20, 4,13,17, 5,10,21, 6,14,18, 7,11,15)$ |
21C-1 | $21$ | $294$ | $21$ | $20$ | $( 1,15,11, 7,18,14, 6,21,10, 5,17,13, 4,20, 9, 3,16,12, 2,19, 8)$ |
Malle's constant $a(G)$: $1/6$
magma: ConjugacyClasses(G);
Character table
45 x 45 character tablemagma: CharacterTable(G);
Regular extensions
Data not computed