Show commands:
Magma
magma: G := TransitiveGroup(21, 33);
Group invariants
Abstract group: | $A_7$ | magma: IdentifyGroup(G);
| |
Order: | $2520=2^{3} \cdot 3^{2} \cdot 5 \cdot 7$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | magma: NilpotencyClass(G);
|
Group action invariants
Degree $n$: | $21$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $33$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | yes | magma: IsPrimitive(G);
| |
$\card{\Aut(F/K)}$: | $1$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | $(1,7,12,16,19,21,6)(2,8,13,17,20,5,11)(3,9,14,18,4,10,15)$, $(4,6,5)(9,11,10)(13,15,14)(16,18,17)(19,20,21)$ | magma: Generators(G);
|
Low degree resolvents
noneResolvents shown for degrees $\leq 47$
Subfields
Degree 3: None
Degree 7: None
Low degree siblings
7T6, 15T47 x 2, 35T28, 42T294, 42T299Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8},1^{5}$ | $105$ | $2$ | $8$ | $( 1, 2)( 4, 5)( 8,12)( 9,14)(10,13)(11,15)(16,17)(20,21)$ |
3A | $3^{5},1^{6}$ | $70$ | $3$ | $10$ | $( 1, 4, 2)( 7, 9,13)( 8,16,12)(10,19,14)(11,20,15)$ |
3B | $3^{7}$ | $280$ | $3$ | $14$ | $( 1,11, 9)( 2,21,16)( 3,15,19)( 4, 6,20)( 5,18,13)( 7,10, 8)(12,14,17)$ |
4A | $4^{4},2^{2},1$ | $630$ | $4$ | $14$ | $( 1, 4, 2, 5)( 3, 6)( 7,19)( 8,20,12,21)( 9,13,14,10)(11,16,15,17)$ |
5A | $5^{4},1$ | $504$ | $5$ | $16$ | $( 1, 9,10,11, 8)( 2,13,14,15,12)( 3, 4,19,21,18)( 5,20,17, 6,16)$ |
6A | $6^{2},3,2^{2},1^{2}$ | $210$ | $6$ | $14$ | $( 1,14, 4,10, 2,19)( 3,21)( 6,17)( 7,13, 9)( 8,15,16,11,12,20)$ |
7A1 | $7^{3}$ | $360$ | $7$ | $18$ | $( 1,13,17, 6, 7,19,18)( 2,14,21,11, 9,16, 3)( 4,12, 5,15,10,20, 8)$ |
7A-1 | $7^{3}$ | $360$ | $7$ | $18$ | $( 1,18,19, 7, 6,17,13)( 2, 3,16, 9,11,21,14)( 4, 8,20,10,15, 5,12)$ |
Malle's constant $a(G)$: $1/8$
magma: ConjugacyClasses(G);
Character table
1A | 2A | 3A | 3B | 4A | 5A | 6A | 7A1 | 7A-1 | ||
Size | 1 | 105 | 70 | 280 | 630 | 504 | 210 | 360 | 360 | |
2 P | 1A | 1A | 3A | 3B | 2A | 5A | 3A | 7A1 | 7A-1 | |
3 P | 1A | 2A | 1A | 1A | 4A | 5A | 2A | 7A-1 | 7A1 | |
5 P | 1A | 2A | 3A | 3B | 4A | 1A | 6A | 7A-1 | 7A1 | |
7 P | 1A | 2A | 3A | 3B | 4A | 5A | 6A | 1A | 1A | |
Type | ||||||||||
2520.a.1a | R | |||||||||
2520.a.6a | R | |||||||||
2520.a.10a1 | C | |||||||||
2520.a.10a2 | C | |||||||||
2520.a.14a | R | |||||||||
2520.a.14b | R | |||||||||
2520.a.15a | R | |||||||||
2520.a.21a | R | |||||||||
2520.a.35a | R |
magma: CharacterTable(G);
Regular extensions
Data not computed